Contemporary Clinical Dentistry
   
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |

 

Login  | Users Online: 872  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 



 
 Table of Contents  
CASE REPORT
Year : 2021  |  Volume : 12  |  Issue : 1  |  Page : 88-93  

The resistance of succedaneous teeth to periapical infection: A series of seven cases


1 Department of Pedodontics and Preventive Dentistry, Goa Dental College and Hospital, Bambolim, Goa, India
2 Department of Conservative Dentistry and Endodontics, Goa Dental College and Hospital, Bambolim, Goa, India
3 Department of Oral and Maxillofacial Surgery, Goa Dental College and Hospital, Bambolim, Goa, India
4 Department of Pedodontics and Preventive Dentistry, YMT Dental College and Hospital, Dr. G. D. Pol Foundation, Navi Mumbai, Maharashtra, India

Date of Submission24-Jan-2020
Date of Decision09-Jul-2020
Date of Acceptance27-Jul-2020
Date of Web Publication20-Mar-2021

Correspondence Address:
Dr. Paul Chalakkal
Department of Pedodontics and Preventive Dentistry, Goa Dental College and Hospital, Bambolim - 403 202, Goa
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ccd.ccd_68_20

Rights and Permissions
   Abstract 


Pediatric dental procedures are carried out largely to prevent the adverse effects of primary teeth infection on succedaneous teeth (ST). The existing literature on how and when periapical infection (PI) from primary teeth affect ST is conflicted. A series of seven case reports on PI (abscesses and radicular cysts) from primary molars, until the eruption of the premolars, have been illustrated. The resistance of ST to PI based on their developmental stages is also discussed.

Keywords: Abscess, ameloblast, follicle, gubernacular canal, primary molar, radicular cyst


How to cite this article:
Chalakkal P, De Souza N, de Ataide IN, Akkara F, Chandran R. The resistance of succedaneous teeth to periapical infection: A series of seven cases. Contemp Clin Dent 2021;12:88-93

How to cite this URL:
Chalakkal P, De Souza N, de Ataide IN, Akkara F, Chandran R. The resistance of succedaneous teeth to periapical infection: A series of seven cases. Contemp Clin Dent [serial online] 2021 [cited 2021 Apr 22];12:88-93. Available from: https://www.contempclindent.org/text.asp?2021/12/1/88/311577




   Introduction Top


Pediatric dental procedures such as restorations, pulp therapy, or extractions are usually undertaken in order to maintain the function and esthetics of primary teeth. However, they are also carried out to prevent the adverse effects of primary teeth infection on succedaneous teeth (ST). The effects of periapical infection (PI) on ST have been reported by various authors on the basis of the structures they have affected such as follicle,[1],[2],[3],[4],[5],[6],[7] reduced enamel epithelium,[1],[3],[4],[5],[6],[8],[9] ameloblasts,[1],[9],[10] gubernacular canal,[1],[3],[4],[5],[6],[8],[9],[11] enamel,[1],[3],[4],[5],[6],[7],[8],[9],[10],[12],[13],[14],[15],[16],[17] dentin,[9],[13] and the root.[7] Its effects on the eruption of ST such as tilting,[18] accelerated eruption,[11],[18] and ankylosis[19] have also been reported. However, this article highlights a series of seven cases, wherein ST were not affected despite the presence of large periapical lesions in their vicinity that had resulted from their corresponding primary teeth.


   Case Reports Top


Case report 1 (periapical abscess)

A 5-year-old male patient had reported with a large gum swelling in the right lower posterior region [Figure 1]a. His parent had mentioned that the caries had been present for 6 months, although the gum swelling had developed 3 days before. On examination, 84 was found to have grade three mobility, tenderness to percussion, and caries on its distal side [Figure 1]b. On compression of the gingival swelling, purulent discharge was observed at the margins. An orthopantomograph (OPG) revealed distoproximal caries in 84 that had resulted in a periapical lesion [Figure 1]c. A diagnosis of periapical abscess was made for 84 and its extraction was carried out [Figure 1]d and [Figure 1]e. A band and loop space maintainer was inserted 2 days later for space maintenance [Figure 1]f. At 11 years of age, all premolars and canines had erupted in the lower arch, and 44 (succedaneous to 84) showed no enamel defect [Figure 1]g.
Figure 1: (a) Right lateral view; (b) occlusal view (lower right side); (c) orthopantomograph (lower right quadrant); (d) right lateral view; (e-g) occlusal view (lower right side); (h) intraoral radiograph; (i and j) occlusal view (lower right side)

Click here to view


Case report 2 (periapical abscess)

An 8-year-old female patient had reported with pain in the lower right posterior tooth. She had mentioned that caries had been present in that tooth since the last 2 years. On examination, 85 was found to have a large caries lesion with gross damage of crown structure. A radiograph showed destruction of mesial root structure, furcation involvement, and periapical radiolucency in relation to 85 [Figure 1]h. Extraction of 85 was carried out and a band and loop space maintainer was inserted [Figure 1]i. At 11 years of age, all premolars and canines had erupted in the lower arch, and 45 (succedaneous to 85) showed no enamel defect [Figure 1]j.

Case report 3 (periapical abscess)

A 9-year-old female patient reported with pain in the lower posterior teeth. On examination, stainless steel crowns were found on 74, 75, 84, and 85, which had been placed 2 years before. An OPG and radiographs revealed minimal root structure and periapical radiolucencies in relation to 74 and 85 [Figure 2]a,[Figure 2]b,[Figure 2]c. A purulent discharge was observed upon deroofing the pulp chambers of 74 and 85 [Figure 2]d. Infected pulp tissue was excavated and an intracanal medicament (Metapex) was placed in these teeth [Figure 2]e and [Figure 2]f. The coronal openings were then restored with glass ionomer cement [Figure 2]g. At 11 years of age, the ST of 74 and 85 (34 and 45) had erupted with no enamel defects [Figure 2]h.
Figure 2: (a) Orthopantomograph; (b) magnified view of orthopantomograph (lower right side); (c) magnified view of orthopantomograph (lower left side); (d) lower occlusal view; (e) posttreatment radiograph (right side); (f) posttreatment radiograph (left side); (g) posttreatment lower occlusal view; (h) lower occlusal view after eruption of premolars

Click here to view


Case report 4 (radicular cyst)

A 9-year-old male patient had reported with pain in relation to the lower left posterior teeth. He had given a history of caries having been present on those teeth for the last 3 years. On examination, 74 and 75 were found to have large caries lesions and showed grade three mobility [Figure 3]a. A radiograph revealed a cystic lesion in relation to 74 and 75 with well-defined margins [Figure 3]b. A diagnosis of radicular cyst was made, following which 74 and 75 were extracted. Following extraction, the crowns of 34 and 35 were partially visible in the extraction sockets [Figure 3]c and [Figure 3]d. Six months following extraction, 33, 34, and 35 had erupted with no enamel defects [Figure 3]e.
Figure 3: (a) Left lateral view of lower arch; (b) radiograph (lower left side); (c and d) lower left occlusal view postextraction; (e) lower left occlusal view after canine and premolar eruption

Click here to view


Case report 5 (radicular cyst)

A 12-year-old male patient had reported with pain in the lower right posterior region that had resulted from caries that was present for the last 4 years. Examination revealed the presence of the roots of 85. An OPG revealed the presence of a radicular cyst in relation to 85 with well-defined margins that had probably resulted in pressure-induced horizontal displacement of 45 [Figure 4]a. The patient was called the next day for extraction of 85. However, the patient returned after 3 months, and a radiograph taken revealed partial up righting of 45 [Figure 4]b. Extraction of 85 was carried out [Figure 4]c followed by the placement of a band and loop space maintainer [Figure 4]d. A radiograph taken 3 months later showed further uprighting of 45 [Figure 4]e until its eruption [Figure 4]f. The space maintainer was removed after eruption and no enamel defects were observed [Figure 4]g.
Figure 4: (a) Orthopantomograph (lower right quadrant); (b) pretreatment radiograph (lower right side); (c) postextraction occlusal view (lower right quadrant); (d) posttreatment occlusal view (lower right quadrant); (e) posttreatment radiograph (lower right side); (f and g) occlusal view (lower right quadrant)

Click here to view


Case report 6 (radicular cyst)

A 9-year-old female patient reported with pain in lower posterior teeth, bilaterally. She had given a history of caries being present on her lower teeth for the last 2 years. On examination, dental caries was found in all lower primary molars and grade three mobility was present in all except 84. An OPG revealed the presence of a large radicular cyst with well-defined margins in relation to 74 and 75 [Figure 5]a. However, computerized tomography (CT) scan images revealed the presence of a radicular cyst in relation to 85, in addition to the larger cyst in relation to 74 and 75 [Figure 5]b,[Figure 5]c,[Figure 5]d,[Figure 5]e. Extraction of 74, 75, and 85 were carried out and a lingual arch was placed to preserve space [Figure 5]f. Glass ionomer cement restoration and stainless-steel crown placement was done for 84 [Figure 5]g. After 1 year of treatment, an OPG revealed absence of the cystic spaces and the presence of normal alveolar bone [Figure 5]h. The lingual arch was removed after the eruption of the premolars and no enamel defects were observed [Figure 5]i.
Figure 5: (a) Orthopantomograph; (b) computerized tomography scan (occlusal view); (c) computerized tomography scan (lower left side); (d) computerized tomography scan (lower left anterior view); (e) computerized tomography scan (lower right side); (f) orthopantomograph; (g) lower occlusal view; (h) orthopantomograph; (i) lower occlusal view

Click here to view


Case report 7 (radicular cyst)

A 9-year-old female patient reported with dull continuous pain in her lower right posterior tooth. On examination, caries was found in 84 and 85 [Figure 6]a. She had mentioned that caries had been present for the last 2 years. However, tenderness to percussion was found only in 85. An OPG revealed a large well-defined cystic lesion in relation to 85 [Figure 6]b. CT scan images revealed perforation of the buccal bone caused by the expanding cyst [Figure 6]c,[Figure 6]d,[Figure 6]e,[Figure 6]f,[Figure 6]g. Restoration of 75 and 84 and extraction of 85 was carried out. No treatment was carried out for 74 (root stumps), since it was asymptomatic and there were no associated radiographic findings. A lingual arch was placed for space maintenance [Figure 6]h. At 11 years of age, all premolars had erupted and there was no enamel defect on 45 [succedaneous to 85; [Figure 6]i].
Figure 6: (a) Lower right occlusal view; (b) orthopantomograph (lower right side); (c) computerized tomography scan (lower right side); (d) computerized tomography scan (lower right anterior view); (e) computerized tomography scan (lower right occlusal view); (f and g) computerized tomography scan cross-sectional view; (h and i) lower right occlusal view

Click here to view



   Discussion Top


It has been observed that the severity of the effects of PI on ST depends on its stage of formation.[10],[12] Hypocalcific defects (qualitative) are most likely to occur during Nolla's 2 and Nolla's 3 stages (beginning of crown mineralization), while hypoplastic defects (quantitative) are most likely to occur during cap or bell stages of tooth formation (ameloblast secretory stages; enamel matrix formation).[14],[20] In all our cases with PI (abscesses and cysts), premolars eventually erupted without any enamel defects. This is because crown formation and calcification had been completed (Nolla's stage 6) in these teeth before they got subjected to PI. Thus, our findings are in partial agreement with those of previous authors.[10],[12],[14],[20]

Various authors had reported enamel defects in newly erupted premolars after being exposed to PI from their corresponding primary molars.[2],[14],[16] However, these had most likely occurred because the premolars had got exposed to PI before they had completed crown formation, which usually occurs between 5 and 6 years in the first premolar and between 6 and 7 years in the second premolar.[16] Therefore, it can be justified that although PI from primary teeth could affect the follicle, reduced enamel epithelium, ameloblasts, gubernacular canal, enamel, dentin, root, or eruption of ST, it is ineffective once crown formation has been completed (Nolla's stage 6) in the ST. Moreover, none of the premolars from our cases exhibited any torsion, rotation, deflection, premature eruption, demarcated opacities, sequestration, or dilaceration.

In a study by Broadbent et al., the occurrence of demarcated opacities in ST was found to be 2.2–2.3 times greater, if there was caries in the primary teeth. However, if there was history of extraction of primary teeth due to caries or periapical abscess, the chances of finding demarcated opacities in their ST were five times greater.[15] PI or extraction of primary teeth can injure the gubernacular canal, which, in turn, can affect ST.[1],[3],[4],[5],[6],[8],[9],[11] Although all the primary molars with PI in our case series were extracted to prevent the spread of the lesions, none of the premolars were affected.

A defense mechanism in the dental follicle that could prevent the entrance of PI from primary teeth was observed in dogs.[8],[13] The presence of a fibrous wall barrier that separates PI from the reduced enamel epithelium of the ST for up to 6 weeks has also been reported.[18] However, the contribution of these defending factors cannot be ascertained from our cases. In case reports 1, 5, and 7, OPG were advised since we suspected large lesions that might extend till the base of the mandible, since these patients had complained of tenderness when the mandible was palpated. In case reports 3 and 6, OPG were advised since the signs and symptoms were present bilaterally on multiple teeth. CT scans were taken for case reports 6 and 7 to assess the amount of mandibular destruction that had occurred due to the large cystic lesions.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.


   Conclusion Top


Unerupted ST with completed crowns (Nolla's stage 6) are unaffected by PI (abscesses or cysts) from their corresponding primary molars or from the extraction of such teeth.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Winter GB, Kramer IR. Changes in periodontal membrane, bone and permanent teeth following experimental pulpal injury in deciduous molar teeth of monkeys (Macaca irus). Arch Oral Biol 1972;17:1771-9.  Back to cited text no. 1
    
2.
Yildiz E, Tosun G, Sari I. Early loss of a permanent tooth due to preceding primary tooth infection. J Pediatr Dent 2014;2:25-7.  Back to cited text no. 2
  [Full text]  
3.
Brook AH, Winter GB, Osborne JA. The occurrence of benign cystic lesions of the jaws in children. Proc Br Paedod Soc 1971;1:16-9.  Back to cited text no. 3
    
4.
Coll JA, Sadrian R. Predicting pulpectomy success and its relationship to exfoliation and succedaneous dentition. Pediatr Dent 1996;18:57-63.  Back to cited text no. 4
    
5.
Cordeiro MMR. Tratamento endodôntico em dentes decíduos: Conseqüências nos dentes permanentes sucessores. Monografia. Universidade Federal de Santa Catarina. Curso de Especialização em Ododntopediatria; 1999.  Back to cited text no. 5
    
6.
Myers DR, Battenhouse MR, Barenie JT, McKinney RV, Singh B. Histopathology of furcation lesions associated with pulp degeneration in primary molars. Pediatr Dent 1987;9:279-82.  Back to cited text no. 6
    
7.
McDonnell ST, Liversidge H, Kinirons M. Temporary arrest of root development in a premolar of a child with hypodontia and extensive caries. Int J Paediatr Dent 2004;14:455-60.  Back to cited text no. 7
    
8.
Matsumiya S. Experimental pathological study on the effect of treatment of infected root canals in the deciduous tooth on growth of the permanent tooth germ. Int Dent J 1968;18:546-59.  Back to cited text no. 8
    
9.
Valderhaug J. Periapical inflammation in primary teeth and its effect on the permanent successors. Int J Oral Surg 1974;3:171-82.  Back to cited text no. 9
    
10.
Turner JG. Two cases of hypoplasia of enamel. Proc R Soc Med 1912;5:73-6.  Back to cited text no. 10
    
11.
Fanning EA. Effect of extraction of deciduous molars on the formation and eruption of their successors. Angle Orthodont 1962;32:44-53.  Back to cited text no. 11
    
12.
Niswander JD, Sujaku C. Relationship of enamel defects of permanent teeth to retention of deciduous tooth fragments. J Dent Res 1962;41:808-14.  Back to cited text no. 12
    
13.
Binns WH Jr., Escobar A. Defects in permanent teeth following pulp exposure of primary teeth. J Dent Child 1967;34:4-14.  Back to cited text no. 13
    
14.
Cordeiro MM, Rocha MJ. The effects of periradicular inflamation and infection on a primary tooth and permanent successor. J Clin Pediatr Dent 2005;29:193-200.  Back to cited text no. 14
    
15.
Broadbent JM, Thomson WM, Williams SM. Does caries in primary teeth predict enamel defects in permanent teeth? A longitudinal study. J Dent Res 2005;84:260-4.  Back to cited text no. 15
    
16.
Anthonappa RP, King NM. Enamel defects in the permanent dentition: Prevalence and etiology. In: Drummond BK, Kilpatrick N, editors. Planning and Care for Children and Adolescents with Dental Enamel Defects: Etiology, Research and Contemporary Management. 1st ed. Berlin and Heidelberg, Germany: Springer-Verlag; 2015. p. 15-30.  Back to cited text no. 16
    
17.
do Espírito Santo Jácomo DR, Campos V. Prevalence of sequelae in the permanent anterior teeth after trauma in their predecessors: A longitudinal study of 8 years. Dent Traumatol 2009;25:300-4.  Back to cited text no. 17
    
18.
Kalra N. Sequelae of neglected pulpal infections of deciduous molars. Endodontol 1994;6:19-23.  Back to cited text no. 18
    
19.
Andreasen JO, Andreasen FM, Andersson L. Textbook and Color Atlas of Traumatic Injuries to the Teeth. 4th ed. New Jersey: Wiley-Blackwell; 2013.  Back to cited text no. 19
    
20.
Giro CM. Enamel hypoplasia in human teeth; an examination of its causes. J Am Dent Assoc 1947;34:310-7.  Back to cited text no. 20
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Case Reports
   Discussion
   Conclusion
    References
    Article Figures

 Article Access Statistics
    Viewed160    
    Printed4    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    

Recommend this journal