Contemporary Clinical Dentistry
   
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |

 

Login  | Users Online: 321  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 



 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2020  |  Volume : 11  |  Issue : 4  |  Page : 342-349  

Comparative evaluation of serum tumor necrosis factor α in health and chronic periodontitis: A case–control study


1 Consultant Periodontist and Implantologist, Vidisha, India
2 Dental Surgeon, Dental Planet Clinic, Vidisha, India
3 Department of Dentistry, Government Hospital, Ratlam, India
4 Consultant Periodontist, Bhopal, India
5 People's Dental Academy, Bhopal Madhya Pradesh, India
6 Dental Surgeon, Apollo Hospital, New Delhi, India

Date of Submission16-Feb-2018
Date of Acceptance08-Apr-2020
Date of Web Publication20-Dec-2020

Correspondence Address:
Dr. Anuj Singh Parihar
People's Dental Academy, Bhopal - 462037, Madhya Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ccd.ccd_97_18

Rights and Permissions
   Abstract 


Background: Tumor necrosis factor-alpha (TNF-α), a ” major inflammatory cytokine,” not only plays an important role in periodontal destruction but also is extremely toxic to the host. Till date, there are not many studies comparing the levels of TNF-α in serum and its relationship to periodontal disease. Aim: Our study aimed to compare the serum TNF-α among the two study groups, namely, healthy controls and chronic periodontitis patients and establish a correlation between serum TNF-α and various clinical parameters. Hence, an attempt is made to estimate the level of TNF-α in serum, its relationship to periodontal disease and to explore the possibility of using the level of TNF-α in serum as a biochemical ” marker” of periodontal disease. Materials and Methods: Forty individuals participated in the study and were grouped into two subgroups. Group A – 20 systemically and periodontally healthy controls. Group B – twenty patients with generalized chronic periodontitis. The serum samples were assayed for TNF-α levels by enzyme-linked immunosorbent assay method. Results: The mean serum TNF-α cytokines for Group B Generalized chronic periodontitis (GCP) was 2.977 ± 1.011, and Group A (healthy) was 0.867 ± 0.865. The range of serum TNF-α was from (0.867 to 2.977). Serum TNF-α cytokines had highly significant correlation with all clinical parameters (plaque index, probing pocket depth, clinical attachment loss, and gingival index) among all study participants (P = 0.001). Conclusion: These observations suggest a positive association between periodontal disease and increased levels of TNF-α in serum. It can be concluded that there is a prospect of using the estimation of TNF-α in serum as a ” marker” of periodontal disease in future. However, it remains a possibility that the absence or low levels of TNF-α in serum might indicate a stable lesion and elevated levels might indicate an active site but only longitudinal studies taking into account, the disease ” activity” and ” inactivity” could suggest the possibility of using TNF-α in serum as an ” Indicator” of periodontal disease.

Keywords: Generalized chronic periodontitis, Inflammation, Tumor necrosis factor alpha


How to cite this article:
Jain P, Ved A, Dubey R, Singh N, Parihar AS, Maytreyee R. Comparative evaluation of serum tumor necrosis factor α in health and chronic periodontitis: A case–control study. Contemp Clin Dent 2020;11:342-9

How to cite this URL:
Jain P, Ved A, Dubey R, Singh N, Parihar AS, Maytreyee R. Comparative evaluation of serum tumor necrosis factor α in health and chronic periodontitis: A case–control study. Contemp Clin Dent [serial online] 2020 [cited 2021 Jun 20];11:342-9. Available from: https://www.contempclindent.org/text.asp?2020/11/4/342/304148




   Introduction Top


Oral health is indispensable to overall healthy being. Man has been suffering from ailments of oral cavity since time immemorial. Oral diseases, especially caries and periodontitis are known for their high prevalence and rapid morbidity. Periodontal diseases are a group of chronic, progressive bacterial infections resulting in inflammation, and destruction of tooth supporting tissues.[1] The periodontal disease is known to have complex pathogenesis with both bacterial and host factors contributing to the destruction of periodontium. The role of host immune response is most important factor in periodontitis as it determines both disease progression and severity.[2]

Difficulty in determining active disease and ongoing destruction in periodontal tissue by traditional diagnostic aids such as probing depth and attachment loss has proved them to be inadequate in the modern era of periodontal therapeutics.[3],[4],[5] Search for a biomarker for periodontitis has resulted in researchers trying out and finding new molecules that can guide a clinician in many a decision regarding the patient's condition.

Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine released by macrophages which is known for its substantial role in periodontitis mediated bone loss.[6] This can be detected in saliva, gingival crevicular fluid (GCF), and serum in both health and periodontitis.[7] Increased concentration observed in periodontitis correlate closely with the tissue destruction and immune response.[8],[9]

Enhanced expressions of serum TNF-α have been observed in rheumatoid arthritis (RA) and chronic obstructive pulmonary disease. In addition, upregulation of its expression in keratinocytes in chronic inflammatory skin diseases such as psoriasis has also been observed.[10] This clearly indicates the role of TNF-α in chronic inflammation. In addition, serum cytokines are increasingly being correlated with periodontal status and oral inflammatory burden in recent times.[8],[11]

In general, pathogenic species and their products can stimulate the production of a number of pro-in?ammatory cytokines, including interleukin (IL)-1b and IL-6 and TNF-α, which coordinate a local in?ammatory response.[12],[13]

The role of TNF-α in the host immune response to local infection has been well documented in the literature. This cytokine triggers the production of adhesion molecules, pro-in?ammatory cytokines, and chemokines, such as IL-1a, IL-1b, IL-6, and IL-8 and matrix metalloproteinases.[14]

In addition, TNF-α may signi?cantly stimulate local bone resorption by inducing osteoclastogenesis and in?uencing the production of the essential osteoclast differentiation factors, such as receptor activator of nuclear factor-kappa B ligand and its soluble decoy receptor, osteoprotegerin.[15],[16],[17],[18],[19],[20]

Hence, the present study was carried out to compare and to correlate TNF-α levels between chronic periodontitis patients and healthy individuals.


   Materials and Methods Top


A total of forty patients were selected from the outpatient department of Periodontology, People's College of Dental Sciences and Research Centre, Bhanpur, Bhopal. They were divided into four groups of patients aged between 24 and 60 years.

The total study population was divided into two groups:

  • Group A – 20 systemically and periodontally healthy controls
  • Group B – twenty patients with generalized chronic periodontitis.


Inclusion criteria

Patients should have at least 20 permanent teeth.

For chronic periodontitis – periodontal pockets ≥4 mm as well as clinical attachment loss (CAL) and bleeding on probing at more than 30% of sites (Armitage 1999)

For healthy periodontium – periodontal probing depth as well as clinical attachment level ≤3 mm.

Exclusion criteria

  • Patients suffering from chronic systemic diseases
  • Pregnant and lactating females
  • Patients taking any medication 6 months before study other than vitamins or occasional analgesics
  • Patients undergoing radiotherapy to head-and-neck region.


The nature and purpose of the study was explained to the patients, and informed consent was obtained from every patient. A detailed case history was recorded in a prepared pro forma which included information regarding the patient's age, gender, medical history and dental history including various clinical parameters.

Collection of blood

From the selected patients, 5 ml of blood was withdrawn from the antecubital vein to evaluate the levels of TNF-α in serum through human serum enzyme-linked immunosorbent assay (ELISA) detection.

Biochemical analysis

Biochemical analysis was carried out at Centre for Scientific Research and Development, People's University, Bhopal.

Enzyme-linked immunosorbent assay KITs

  • TNF-α is a potent lymphoid factor which exerts cytotoxic effects on a wide range of tumor cells and certain other target cells. Human TNF-α is a 17.4 kD protein containing 157 amino acid residues.


Intended use

Human ELISA Kits are specifically designed for the accurate quantification of human TNF-α, from cell culture supernatant, serum, plasma, or other bodily fluids. It is ready-to-use, accurate, and sensitive.

Statistical analysis

The data obtained was subjected to statistical analysis with the consult of a statistician. The data so obtained was compiled systematically. A master table was prepared, and the total data were subdivided and distributed meaningfully and presented as individual tables along with graph.

Statistical procedures were carried out in two steps:

  1. Data compilation and presentation
  2. Statistical analysis.


Statistical analysis was done using Statistical Package of Social Science (SPSS Version 20; Chicago Inc., IL, USA). Data comparison was done by applying specific statistical tests to find out the statistical significance of the comparisons. Quantitative variables were compared using mean values and qualitative variables using proportions.

The significance level was fixed at P < 0.05.

Interpretation of the results

Periodontitis is a chronic bacterial infection characterized by persistent inflammation, connective tissue breakdown, and alveolar bone destruction mediated by pro-inflammatory mediators. TNF-α is a pro-inflammatory cytokine released by macrophages which is known for its substantial role in periodontitis mediated bone loss.[6] This can be detected in saliva, GCF, and serum in both health and periodontitis.[7] Increased concentration observed in periodontitis correlate closely with the tissue destruction and immune response.[8]

When the mean of serum TNF-α values was compared between healthy and generalized chronic periodontitis patients, it was found that the values were significantly higher for patients with GCP than for healthy controls as shown in [Table 1] and [Graph 1]. Increased level of TNF-α in serum is related with an inflammatory state. High numbers of inflammatory cells in the connective tissue and gingival crevice can lead to the release of TNF-α on stimulation by the bacterial products[67]
Table 1: Comparison of mean serum tumor necrosis factor-alpha cytokines among healthy and chronic generalized periodontitis patients

Click here to view



Stashenko et al.[70] have reported that there were increased levels of TNF-α in gingival tissues of periodontitis patients. They suggested that TNF-α is related with the inflammatory condition of the periodontium. TNF-α may be synthesized and secreted by the local periodontal connective tissue cells, such as fibroblasts and endothelial cells or by infiltrating leukocytes, i.e., mononuclear cells, macrophages, and neutrophils.

The results of our study was in accordance with a study conducted by Varghese et al. (2015), to estimate the salivary TNF-α in chronic and aggressive periodontitis and control participants. They concluded that salivary TNF-α levels are significantly higher in chronic periodontitis than in healthy controls; however, there was no significant correlation with the clinical parameters.

Correlation of tumor necrosis factor alpha with various clinical parameters

In our study, the results show that serum TNF-α cytokines had a strong positive highly significant correlation with plaque index (PI), probing pocket depth (PPD), and CAL and there was a moderate positive significant correlation between TNF-α and gingival index (GI). Serum TNF-α cytokines had a highly significant correlation with all clinical parameters among all study participants (P = 0.001) as shown in [Graph 2], [Graph 3], [Graph 4] and [Table 1], [Table 2], [Table 3], [Table 4], [Table 5].

Table 2: Comparison of mean serum TNF-α cytokines among smokers & non-smokers healthy subjects

Click here to view
Table 3: Spearman's correlation of serum tumor necrosis factor-alpha cytokines with all clinical parameter among healthy study participants

Click here to view
Table 4: Spearman's correlation of serum tumor necrosis factor-alpha cytokines with all clinical parameter among chronic generalized periodontitis patients

Click here to view
Table 5: Spearman's correlation of serum tumor necrosis factor-alpha cytokines with all clinical parameter among all study participants

Click here to view


In a previous study by Engebretson et al.,[47] TNF-α showed a significant positive correlation with attachment loss, but not probing depth and PI. A dose-response relationship was observed between periodontitis severity and TNF-α.

Ikezawa et al. in their study reported a significant positive correlation between GCF TNF-α levels with pocket depth in chronic periodontitis patients.[71] Kurtis et al. also reported a positive correlation between salivary TNF-α levels and clinical parameters such as probing depth, CAL, PI, and GI in GCF samples of patients with chronic and aggressive periodontitis.[72]

Mean gingival index score

Mean GI for chronic generalized periodontitis (CGP) patients was (1.32 ± 0.37) and among healthy controls were (0.032 ± 0.011) There was statistically highly significant difference in mean gingival index among both the groups (P = 0.001) as shown in [Table 6].
Table 6: Comparison of mean gingival index among healthy and chronic generalized periodontitis patients

Click here to view


Mean plaque index score

Mean PI were highest among CGP patients. It was (2.76 ± 0.39) among CGP, and (0.029 ± 0.013) among healthy controls. There was statistically highly significant difference in mean PI among both the groups (P = 0.001) as shown in [Table 7].
Table 7: Comparison of mean plaque index among healthy and chronic generalized periodontitis patients

Click here to view


Mean probing pocket depth

The mean PPD were (5.33 ± 0.51) among CGP, and (1.49 ± 0.18) among healthy controls as shown in [Table 8]. There was statistically highly significant difference in mean PPD among both the groups (P = 0.001).
Table 8: Comparison of mean probing pocket depth among healthy and chronic generalized periodontitis patients

Click here to view


Mean clinical attachment loss

The mean CAL was (4.97 ± 0.53) among CGP, and (1.49 ± 0.18) among healthy controls as shown in [Table 9]. There was statistically highly significant difference in mean CAL among both the study groups (P = 0.001).
Table 9: Comparison of mean clinical attachment loss among healthy chronic generalized periodontitis patients

Click here to view



   Discussion Top


Cytokines are key modulators of inflammation. They participate in acute and chronic inflammation in a complex network of interactions. Several cytokines exhibit some redundancy in function and share overlapping properties as well as subunits of their cell surface receptors.[21]

Periodontal diseases are characterized by the classic hallmarks of the inflammatory response, including erythema and edema. Late sequelae of periodontal diseases include the loss of alveolar bone, periodontal ligament attachment, and ultimately, teeth. Therefore, periodontal disease can be viewed as a chronic inflammatory process in which bacteria-induced localized gingival inflammation results in the destruction of bone and the attachment apparatus of the teeth.[22],[23],[24],[25],[26],[27],[28],[29],[30],[31],[32],[33],[34], It has also been considered a risk for a variety of systemic conditions, including cardiovascular disease, diabetes mellitus, RA, and respiratory disorders.[35],[36],[37],[38],[39],[40],[41],[42] When the relationship between periodontitis and RA was examined, the findings suggested that circulating TNF-α is related to periodontal inflammation with regard to tissue destruction and vascular reaction in patients with RA.[41]

Role of tumor necrosis factor-alpha in pathogenesis of periodontitis

Periodontitis is initiated by specic bacteria, and the local host response to these bacteria includes the recruitment of leukocytes and the subsequent release of in?ammatory mediators and cytokines such as IL-1, IL-6, IL-8, IL-10, IL-12, and TNF-α, which are thought to play an important role in the pathogenesis of the disease. These increased levels of several cytokines are involved in periodontal tissue destruction[43],[44],[45],[46],[47],[48],[49],[50],[51],[52] (Genco 1992).

TNF-α is also a monocyte-derived protein that has a wide range of pro-inammatory and immunomodulatory effects on a number of different cell populations. TNF-α can stimulate ?broblasts including gingival ?broblasts, to produce collagenase (Meikle et al. 1989), an enzyme implicated in the tissue destruction of periodontal disease, and to stimulate bone resorption (Bertolini et al. 1986). TNF-α activates monocytes and stimulates the production of IL-1b, platelet activating factor, and prostaglandins (Decker 2000). Monocyte stimulation by lipopolysaccharide enhances the production of TNF-α, which has also been shown to induce collagenase release and bone resorption in vivo (Erdemir EO).[52],[53],[54],[55],[56],[57],[58],[59],[60],[61],[62]

Pro-inflammatory cytokines (TNF-α, IL-1a, and IL-1 β) are necessary for initiating an effective inflammatory process against infection. TNF-α also activates osteoclasts and thus induces bone resorption and has synergistic effects with the bone-resorptive actions of IL-1 β.[41]

Studies have shown a positive correlation between IL-1 β and TNF-α in chronic periodontitis patients (Vahabi et al.)[63]

Reddy et al. have shown a positive correlation of TNF-α concentration with the extent of periodontal destruction.[64] Level of circulating TNF-α in serum has been seen to have decreased following periodontal therapy.[65] The concentration of IL-1 β was reported to be higher in GCF in cases of chronic periodontitis patients than in gingivitis and control group.

Tumor necrosis factor alpha and its association with systemic diseases

The levels of these cytokines were found to be positively correlated with systemic disease. The levels of IL-1 β and TNF-α were higher in serum of diabetic patients with periodontal disease (Dag A).[66] IL-6 and TNF-α concentrations were little higher in the serum of patients with type-2 diabetes mellitus than that of the control group (Monea A).[67]

The level of TNF-α level was significantly higher in patients with osteoporosis. It was concluded that osteoporosis patients are prone to overproduce TNF-α, which also activates the B-cells and promotes the B-cell activity in the periodontal inflammatory sites, aggravating the periodontal disease[68]

TNF-α level in serum act as diagnostic marker of periodontal disease in patients with Alzheimer disease (Kanakdande V).[69]

Limitations

Although bacteria are the primary etiologic factors in periodontal disease, the patient's host response is a determinant of disease susceptibility. The presence of excessive amount of subgingival and supragingival plaque makes the evaluation of the effect of smoking on periodontal health extremely dif?cult.[43]

Difficulty in determining active disease and ongoing destruction in periodontal tissue by traditional diagnostic aids such as probing depth and attachment loss has proved them to be inadequate in the modern era of periodontal therapeutics.[5] Search for a biomarker for periodontitis has resulted in researchers trying out and finding new molecules that can guide a clinician in many a decision regarding the patient's condition.


   Conclusion Top


These observations suggest a positive association between periodontal disease and increased levels of TNF-α in serum. It can be concluded that there is a prospect of using the estimation of TNF-α in serum as a ” marker” of periodontal disease in the future.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
Pucher J, Stewart J. Periodontal disease and diabetes mellitus. Curr Diab Rep 2004;4:46-50.  Back to cited text no. 1
    
2.
Seymour GJ, Gemmell E, Reinhardt RA, Eastcott J, Taubman MA. Immunopathogenesis of chronic inflammatory periodontal disease: Cellular and molecular mechanisms. J Periodontal Res 1993;28:478-86.  Back to cited text no. 2
    
3.
Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002;2:372-7.  Back to cited text no. 3
    
4.
Moimaz SA, Zina LG, Saliba O, Garbin CA. Smoking and periodontal disease: Clinical evidence for an association. Oral Health Prev Dent 2009;7:369-76.  Back to cited text no. 4
    
5.
Fine DH, Mandel ID. Indicators of periodontal disease activity: An evaluation. J Clin Periodontol 1986;13:533-46.  Back to cited text no. 5
    
6.
Boyce BF, Li P, Yao Z, Zhang Q, Badell IR, Schwarz EM, et al. TNF-αlpha and pathologic bone resorption. Keio J Med 2005;54:127-31.  Back to cited text no. 6
    
7.
Rossomando EF, White L. A novel method for the detection of TNF-αlpha in gingival crevicular fluid. J Periodontol 1993;64:445-9.  Back to cited text no. 7
    
8.
Teles RP, Likhari V, Socransky SS, Haffajee AD. Salivary cytokine levels in subjects with chronic periodontitis and in periodontally healthy individuals: A cross-sectional study. J Periodontal Res 2009;44:411-7.  Back to cited text no. 8
    
9.
Zou C, Shao J. Role of adipocytokines in obesity-associated insulin resistance. J Nutr Biochem 2008;19:277-86.  Back to cited text no. 9
    
10.
Jeong SH, Park JH, Kim JN, Park YH, Shin SY, Lee YH, et al. Up-regulation of TNF-αlpha secretion by cigarette smoke is mediated by Egr-1 in HaCaT human keratinocytes. Exp Dermatol 2010;19:e206-12.  Back to cited text no. 10
    
11.
Gümüs P, Nizam N, Lappin DF, Buduneli N. Saliva and serum levels of B-cell activating factors and tumor necrosis factor-a in patients with periodontitis. J Periodontol 2014;85:270-80.  Back to cited text no. 11
    
12.
Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007;449:819-26.  Back to cited text no. 12
    
13.
Wajant H, Pfeffer K, Pfizenmaier K, Scheurich P. Tumor necrosis factors in 1998. Cytokine Growth Factor Rev 1998;9:297-302.  Back to cited text no. 13
    
14.
Wang S, Liu J, Zhang J, Lin J, Yang S, Yao J, et al. Glycemic control and adipokines after periodontal therapy in patients with Type 2 diabetes and chronic periodontitis. Braz Oral Res. 2017 Nov 27;31:e90. doi: 10.1590/1807-3107BOR-2017.vol31.0090. PMID: 29185604.  Back to cited text no. 14
    
15.
Rossomando EF, Kennedy JE, Hadjimichael J. Tumour necrosis factor alpha in gingival crevicular fluid as a possible indicator of periodontal disease in humans. Arch Oral Biol 1990;35:431-4.  Back to cited text no. 15
    
16.
Shapira L, Soskolne WA, Sela MN, Offenbacher S, Barak V. The secretion of PGE2, IL-1 beta, IL-6, and TNF alpha by adherent mononuclear cells from early onset periodontitis patients. J Periodontol 1994;65:139-46.  Back to cited text no. 16
    
17.
Delima AJ, Oates T, Assuma R, Schwartz Z, Cochran D, Amar S, et al. Soluble antagonists to interleukin-1 (IL-1) and tumor necrosis factor (TNF) inhibits loss of tissue attachment in experimental periodontitis. J Clin Periodontol 2001;28:233-40.  Back to cited text no. 17
    
18.
Gamonal J, Sanz M, O'Connor A, Acevedo A, Suarez I, Sanz A, et al. Delayed neutrophil apoptosis in chronic periodontitis patients. J Clin Periodontol 2003;30:616-23.  Back to cited text no. 18
    
19.
Gaspersic R, Stiblar-Martincic D, Osredkar J, Skaleric U. In vivo administration of recombinant TNF-αlpha promotes bone resorption in mice. J Periodontal Res 2003;38:446-8.  Back to cited text no. 19
    
20.
Vieira BJ, de Souza AR, Aarestrup FM. Tumor necrosis factor-alpha expression and detection of apoptosis at the site of chronic periodontitis in AIDS patients. J Periodontal Res 2003;38:606-10.  Back to cited text no. 20
    
21.
Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci 1997;2:d12-26.  Back to cited text no. 21
    
22.
Gokul K. Estimation of the level of tumor necrosis factor-a in gingival crevicular fluid and serum in periodontal health and disease: A biochemical study. Indian J Dent Res 2012;23:348-52.  Back to cited text no. 22
[PUBMED]  [Full text]  
23.
Erciyas K, Sezer U, Ustün K, Pehlivan Y, Kisacik B, Senyurt SZ, et al. Effects of periodontal therapy on disease activity and systemic inflammation in rheumatoid arthritis patients. Oral Dis 2013;19:394-400.  Back to cited text no. 23
    
24.
Saxlin T, Suominen-Taipale L, Leiviskä J, Jula A, Knuuttila M, Ylöstalo P. Role of serum cytokines tumour necrosis factor-alpha and interleukin-6 in the association between body weight and periodontal infection. J Clin Periodontol 2009;36:100-5.  Back to cited text no. 24
    
25.
Boas Nogueira AV, Chaves de Souza JA, Kim YJ, Damião de Sousa-Neto M, Chan Cirelli C, Cirelli JA, et al. Orthodontic force increases interleukin-1β and tumor necrosis factor-a expression and alveolar bone loss in periodontitis. J Periodontol 2013;84:1319-26.  Back to cited text no. 25
    
26.
Padial-Molina M, Volk SL, Rodriguez JC, Marchesan JT, Galindo-Moreno P, Rios HF, et al. Tumor necrosis factor-a and porphyromonas gingivalis lipopolysaccharides decrease periostin in human periodontal ligament fibroblasts. J Periodontol 2013;84:694-703.  Back to cited text no. 26
    
27.
Farhad SZ, Amini S, Khalilian A, Barekatain M, Mafi M, Barekatain M, et al. The effect of chronic periodontitis on serum levels of tumor necrosis factor-alpha in Alzheimer disease. Dent Res J (Isfahan) 2014;11:549-52.  Back to cited text no. 27
    
28.
Yilmaz G, Kirzioglu FY, Doguç DK, Koçak H, Orhan H. Ghrelin levels in chronic periodontitis patients. Odontology 2014;102:59-67.  Back to cited text no. 28
    
29.
Singh P, Gupta ND, Bey A, Khan S. Salivary TNF-αlpha: A potential marker of periodontal destruction. J Indian Soc Periodontol 2014;18:306-10.  Back to cited text no. 29
[PUBMED]  [Full text]  
30.
Kosel O, Canakci V, Canakci CF, Yildirim A, Kerme E, Arabaci T, et al. The effects of obesity on local and circulating levels of tumor necrosis factor-a and interleukin-6 in patients with chronic periodontitis. J Periodontol Implant Dent 2015;7:7-14.  Back to cited text no. 30
    
31.
Gonçalves TE, Zimmermann GS, Figueiredo LC, Souza Mde C, da Cruz DF, Bastos MF, et al. Local and serum levels of adipokines in patients with obesity after periodontal therapy: One-year follow-up. J Clin Periodontol 2015;42:431-9.  Back to cited text no. 31
    
32.
Zhang P, Li YJ, Guo LY, Wang GF, Lu K, Yue EL, et al. Focal adhesion kinase activation is required for TNF-α-induced production of matrix metalloproteinase-2 and proinflammatory cytokines in cultured human periodontal ligament fibroblasts. Eur J Oral Sci 2015;123:249-53.  Back to cited text no. 32
    
33.
Malarkodi T, Sathasivasubramanian S. Quantitative analysis of salivary TNF-α in oral lichen planus patients. Int J Dent 2015;34:23-9.  Back to cited text no. 33
    
34.
Jakovljevic A, Knezevic A, Karalic D, Soldatovic I, Popovic B, Milasin J, et al. Pro-inflammatory cytokine levels in human apical periodontitis: Correlation with clinical and histological findings. Aust Endod J 2015;41:72-7.  Back to cited text no. 34
    
35.
Tan J, Zhou L, Xue P, An Y, Luo L, Zhang R, et al. Tumor necrosis factor-a attenuates the osteogenic differentiation capacity of periodontal ligament stem cells by activating PERK signaling. J Periodontol 2016;87:e159-71.  Back to cited text no. 35
    
36.
Zhao B, Jin C, Li L, Wang Y. Increased expression of TNF-α occurs before the development of periodontitis among obese Chinese children: A Potential marker for prediction and prevention of periodontitis. Oral Health Prev Dent 2016;14:71-5.  Back to cited text no. 36
    
37.
Silness J, Loe H. Periodontal disease in pregnancy and correlation between oral hygiene and periodontal conditions. Acta Odontol Scand 1964;24:747-59.  Back to cited text no. 37
    
38.
Loe H, Silness J. Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontol Scand 1963;21:533-51.  Back to cited text no. 38
    
39.
Listgarten MA, Mao R, Robinson PJ. Periodontal probing and the relationship of the probe tip to periodontal tissues. J Periodontol 1976;47:511-3.  Back to cited text no. 39
    
40.
Preshaw PM, Kupp L, Hefti AF, Mariotti A. Measurement of clinical attachment levels using a constant-force periodontal probe modified to detect the cemento-enamel junction. J Clin Periodontol 1999;26:434-40.  Back to cited text no. 40
    
41.
Mayer Y, Balbir-Gurman A, Machtei EE. Anti-tumor necrosis factor-alpha therapy and periodontal parameters in patients with rheumatoid arthritis. J Periodontol 2009;80:1414-20.  Back to cited text no. 41
    
42.
Sllamnikudalipi Z, Dragidella F, Disha M, Meqa K, Begolli L, Begolli G. Inflammatory biomarkers as potential mediators for the association between periodontal and systemic disease in Kosovo. J Int Dent Med Res 2013;6:1-5.  Back to cited text no. 42
    
43.
Erdemir EO, Duran I, Haliloglu S. Effects of smoking on clinical parameters and the gingival crevicular fluid levels of IL-6 and TNF-αlpha in patients with chronic periodontitis. J Clin Periodontol 2004;31:99-104.  Back to cited text no. 43
    
44.
Ikezawa I, Tai H, Shimada Y, Komatsu Y, Galicia JC, Yoshie H, et al. Imbalance between soluble tumour necrosis factor receptors type 1 and 2 in chronic periodontitis. J Clin Periodontol 2005;32:1047-54.  Back to cited text no. 44
    
45.
Yongchaitrakul T, Lertsirirangson K, Pavasant P. Human periodontal ligament cells secrete macrophage colony-stimulating factor in response to tumor necrosis factor-alpha in vitro. J Periodontol 2006;77:955-62.  Back to cited text no. 45
    
46.
Talbert J, Elter J, Jared HL, Offenbacher S, Southerland J, Wilder RS, et al. The effect of periodontal therapy on TNF-αlpha, IL-6 and metabolic control in type 2 diabetics. J Dent Hyg 2006;80:7.  Back to cited text no. 46
    
47.
Engebretson S, Chertog R, Nichols A, Hey-Hadavi J, Celenti R, Grbic J, et al. Plasma levels of tumour necrosis factor-alpha in patients with chronic periodontitis and type 2 diabetes. J Clin Periodontol 2007;34:18-24.  Back to cited text no. 47
    
48.
Nilsson M, Kopp S. Gingivitis and periodontitis are related to repeated high levels of circulating tumor necrosis factor-alpha in patients with rheumatoid arthritis. J Periodontol 2008;79:1689-96.  Back to cited text no. 48
    
49.
Ikezawa-Suzuki I, Shimada Y, Tai H, Komatsu Y, Tanaka A, Yoshie H, et al. Effects of treatment on soluble tumour necrosis factor receptor type 1 and 2 in chronic periodontitis. J Clin Periodontol 2008;35:961-8.  Back to cited text no. 49
    
50.
Dag A, Firat ET, Arikan S, Kadiroglu AK, Kaplan A. The effect of periodontal therapy on serum TNF-αlpha and HbA1c levels in type 2 diabetic patients. Aust Dent J 2009;54:17-22.  Back to cited text no. 50
    
51.
Baser U, Cekici A, Tanrikulu-Kucuk S, Kantarci A, Ademoglu E, Yalcin F, et al. Gingival inflammation and interleukin-1 beta and tumor necrosis factor-alpha levels in gingival crevicular fluid during the menstrual cycle. J Periodontol 2009;80:1983-90.  Back to cited text no. 51
    
52.
Ortiz P, Bissada NF, Palomo L, Han YW, Al-Zahrani MS, Panneerselvam A, et al. Periodontal therapy reduces the severity of active rheumatoid arthritis in patients treated with or without tumor necrosis factor inhibitors. J Periodontol 2009;80:535-40.  Back to cited text no. 52
    
53.
de Mendonça AC, Santos VR, César-Neto JB, Duarte PM. Tumor necrosis factor-alpha levels after surgical anti-infective mechanical therapy for peri-implantitis: A 12-month follow-up. J Periodontol 2009;80:693-9.  Back to cited text no. 53
    
54.
Bastos MF, Lima JA, Vieira PM, Mestnik MJ, Faveri M, Duarte PM, et al. TNF-αlpha and IL-4 levels in generalized aggressive periodontitis subjects. Oral Dis 2009;15:82-7.  Back to cited text no. 54
    
55.
Costa AM, Guimarães MC, de Souza ER, Nóbrega OT, Bezerra AC. Interleukin-6 (G-174C) and tumour necrosis factor-alpha (G-308A) gene polymorphisms in geriatric patients with chronic periodontitis. Gerodontology 2010;27:70-5.  Back to cited text no. 55
    
56.
Nakajima T, Honda T, Domon H, Okui T, Kajita K, Ito H, et al. Periodontitis-associated up-regulation of systemic inflammatory mediator level may increase the risk of coronary heart disease. J Periodontal Res 2010;45:116-22.  Back to cited text no. 56
    
57.
Lima HR, Gelani V, Fernandes AP, Gasparoto TH, Torres SA, Santos CF, et al. The essential role of toll like receptor-4 in the control of aggregatibacter actinomycetemcomitans infection in mice. J Clin Periodontol 2010;37:248-54.  Back to cited text no. 57
    
58.
Jaganath S, Vijayendra R. Estimation of tumor necrosis factor-alpha in the gingival crevicular fluid of poorly, moderately and well controlled type 2 diabetes mellitus patients with periodontal disease – A clinical and biochemical study. Indian J Stomatol 2011;2:159-64.  Back to cited text no. 58
    
59.
Rai B, Kaur J, Anand SC. Possible relationship between periodontitis and dementia in a North Indian old age population: A pilot study. Gerodontology 2012;29:e200-5.  Back to cited text no. 59
    
60.
Fentoglu O, Kirzioglu FY, Ozdem M, Koçak H, Sütçü R, Sert T, et al. Proinflammatory cytokine levels in hyperlipidemic patients with periodontitis after periodontal treatment. Oral Dis 2012;18:299-306.  Back to cited text no. 60
    
61.
Akman PT, Fentoglu O, Yilmaz G, Arpak N. Serum plasminogen activator inhibitor-1 and tumor necrosis factor-a levels in obesity and periodontal disease. J Periodontol 2012;83:1057-62.  Back to cited text no. 61
    
62.
Teles FR, Teles RP, Martin L, Socransky SS, Haffajee AD. Relationships among interleukin-6, tumor necrosis factor-a, adipokines, Vitamin D, and chronic periodontitis. J Periodontol 2012;83:1183-91.  Back to cited text no. 62
    
63.
Vahabi S, Sattari M, Taheraslani M, Akbarzadeh Bagheban A. Correlation between interleukin-1β, interleukin-6 and tumor necrosis factor-a and clinical parameters in chronic and aggressive periodontal disease. J Periodontol Implant Dent 2012;3:51-6.  Back to cited text no. 63
    
64.
Reddy NR, Babu DM, Reddy V, Sarath N, Reddy CV, Kumar AK. Estimation of tumor necrosis factor-a in chronic periodontitis and its co-relation with preterm gestation: A clinico biochemical study. J Orofac Sci 2012;4:108.  Back to cited text no. 64
    
65.
Yun F, Firkova EI, Xun H, Jun-Qi L. Effects of surgical periodontal therapy on serum levels of TNF-αlpha in patients with chronic periodontitis. Folia Med (Plovdiv) 2007;49:37-40.  Back to cited text no. 65
    
66.
Kimak A, Strycharz-Dudziak M, Bachanek T, Kimak E. Lipids and lipoproteins and inflammatory markers in patients with chronic apical periodontitis. Lipids Health Dis. 2015;14:162.  Back to cited text no. 66
    
67.
Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 1991;26:230-42.  Back to cited text no. 67
    
68.
Ursarescu I, Pasarin L, Solomon S, Boatca RM, Martu A, Moise G, et al. The assessment of serum and GCF proinflammatory cytokines levels in patients with osteoporosis and periodontal disease. Roman J Oral Rehab 2014;6:45-50.  Back to cited text no. 68
    
69.
Kanakdande V, Patil KP, Nayyar AS. Comparative evaluation of clinical, hematological and systemic inflammatory markers in smokers and non-smokers with chronic periodontitis. Contemp Clin Dent 2015;6:348-57.  Back to cited text no. 69
[PUBMED]  [Full text]  
70.
Stashenko P, Jandinski JJ, Fujiyoshi P, Rynar J, Socransky SS. Tissue levels of bone resorptive cytokines in periodontal disease. J Periodontol 1991;62:504-9.  Back to cited text no. 70
    
71.
Acharya AB, Thakur S, Muddapur MV, Kulkarni RD. Tumor necrosis factor-a, interleukin-4 and -6 in the serum of health, chronic periodontitis, and type 2 diabetes mellitus. J Indian Soc Periodontol 2016;20:509-13.  Back to cited text no. 71
    
72.
Kurtis B, Tüter G, Serdar M, Akdemir P, Uygur C, Firatli E, et al. Gingival crevicular fluid levels of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha in patients with chronic and aggressive periodontitis. J Periodontol 2005;76:1849-55.  Back to cited text no. 72
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6], [Table 7], [Table 8], [Table 9]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Discussion
   Conclusion
    References
    Article Tables

 Article Access Statistics
    Viewed654    
    Printed8    
    Emailed0    
    PDF Downloaded51    
    Comments [Add]    

Recommend this journal