Contemporary Clinical Dentistry
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |


Login  | Users Online: 8511  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2018  |  Volume : 9  |  Issue : 6  |  Page : 347-353

Flexural strength of surface-treated heat-polymerized acrylic resin after repair with aluminum oxide-reinforced autopolymerizing acrylic resin

1 Department of Prosthodontics and Crown and Bridge, MGM Dental College and Hospital, Navi Mumbai, Maharashtra, India
2 Department of Prosthodontics and Crown and Bridge, Coorg Institute of Dental Sciences, Virajpet, Karnataka, India
3 Department of Biochemistry, Royal Dental College, Palakkad, Kerala, India

Correspondence Address:
Dr. Amit M Gaikwad
Assistant Professor, Department of Prosthodontics and Crown & Bridge, MGM Dental College and Hospital, Kamothe, Navi Mumbai, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ccd.ccd_483_18

Rights and Permissions

Background: A fracture of denture base in situ often occurs through a fatigue mechanism, which over a period of time leads to the formation of small cracks, resulting in fracture. Aim and Objective: To evaluate the flexural strength of repaired heat-polymerized acrylic resin, with different percentage of aluminum oxide (Al2O3) added to the repair resin and effect of two different surface treatments on the flexural strength of repaired heat-polymerized acrylic resin and also to evaluate quantification of filler particles using scanning electron microscopy. Materials and Methodology: Fifty specimens of heat-polymerized acrylic resin were prepared according to the American Dental Association specification no. 12 (65 mm × 10 mm × 2.5 mm). Al2O3<50 nm particle size was silanized using metal alloy primer before incorporation in polymer. Two different percentages of Al2O3nanoparticles, that is, 1% and 1.5% were added to autopolymerizing acrylic resin which was used as repairing material. Results: The study showed that repair resin incorporated with 1.5% Al2O3in the group surface treated with silicon carbide paper improved the flexural strength of denture base resin. A proper filler distribution and deep penetration within the polymer matrix were observed by scanning electron microscope in the same group.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded193    
    Comments [Add]    
    Cited by others 3    

Recommend this journal