Contemporary Clinical Dentistry
   
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |

 

Login  | Users Online: 695  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 



 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2019  |  Volume : 10  |  Issue : 1  |  Page : 81-85  

Comparative evaluation of efficacy of green tea mouth rinse and green tea gel on the salivary streptococcus mutans and Lactobacillus colony count in 12–18-year-old teenagers: A randomized clinical trial


1 Department of Pediatric Dentistry, Dental Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
2 General Dentist, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Pharmacognosy, Faculty of Pharmacy, Pharmacology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
4 Department of Pharmaceutics, Faculty of Pharmacy, Research Center for Advanced Pharmaceutical Systems, Isfahan University of Medical Sciences, Isfahan, Iran
5 Department of Pharmacy, Pharmacognosy Laboratory, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
6 Pediatric Dentistry Resident, Louisiana State University, New Orleans, Louisiana, United States

Date of Web Publication17-Dec-2019

Correspondence Address:
Najmeh Akhlaghi
Hezar Jarib Ave, Tadbir Building, Isfahan University of Medical Sciences, Pediatric Dentistry Department, Isfahan
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ccd.ccd_368_18

Rights and Permissions
   Abstract 

Aims: Green tea is an antibacterial agent with no significant side effect. This feature makes green tea safe for children to use. The purpose of this study was to compare the effectiveness of green tea gel and mouth rinse on salivary level of Streptococcus mutans and Lactobacillus of teenagers aged 12–18 years. Subjects and Methods: In this randomized controlled clinical trial study, 30 children aged 12–18 years were included in the study according to the inclusion criteria and were randomly divided into two groups. Participants in mouth rinse group were asked to rinse their mouth with 0.5% green tea mouthwash twice a day for 2 weeks. In the gel group, participants were requested to brush their teeth with 0.5% green tea gel twice a day for 2 weeks. After 4 weeks of washout period, mouthwash group applied the gel and the gel group rinsed the mouthwash for 2 weeks and with the same instruction as mentioned. Colony count of S. mutans and Lactobacillus was determined before and after intervention and data were analyzed using t- test. Results: According to the independent t- test, there was no significant difference in the salivary levels of S. mutans before and after intervention regarding age and gender (P = 0.33). Results from paired t-test showed significant decrease in the mean count of S. mutans and Lactobacillus colonies in both groups before and after intervention (P < 0.001). Conclusions: Green tea gel and mouthwash contribute to a significant reduction of salivary levels of S. mutans and Lactobacillus colonies, with a greater effect of mouthwash than the green tea gel, which was not statistically significant.

Keywords: Green tea, Lactobacillus, mouthwash, Streptococcus mutans


How to cite this article:
Ahmadi MH, Sarrami L, Yegdaneh A, Homayoni A, Bakhtiyari Z, Danaeifar N, Akhlaghi N. Comparative evaluation of efficacy of green tea mouth rinse and green tea gel on the salivary streptococcus mutans and Lactobacillus colony count in 12–18-year-old teenagers: A randomized clinical trial. Contemp Clin Dent 2019;10:81-5

How to cite this URL:
Ahmadi MH, Sarrami L, Yegdaneh A, Homayoni A, Bakhtiyari Z, Danaeifar N, Akhlaghi N. Comparative evaluation of efficacy of green tea mouth rinse and green tea gel on the salivary streptococcus mutans and Lactobacillus colony count in 12–18-year-old teenagers: A randomized clinical trial. Contemp Clin Dent [serial online] 2019 [cited 2020 May 28];10:81-5. Available from: http://www.contempclindent.org/text.asp?2019/10/1/81/273153


   Introduction Top


Dental caries is one of the most prevalent chronic diseases. It results from different factors including tooth anatomy, oral bacterial flora, nutrition, and diet. Streptococcus mutans and Streptococcus sobrinus are the main bacteria contributing to the development of caries. In addition, Lactobacillus and Actinomyces may promote the caries process.[1],[2],[3] It has been shown that salivary contamination with S. mutans is directly related to caries development. Hence, reducing the number of colonies of aforementioned bacteria will reduce the risk of dental caries.[4],[5]

Plaque-induced dental caries is categorized as a local disease. Therefore, local application of antimicrobial agents would have higher efficiency than systemic application.[6],[7] Green tea is one of the antimicrobial agents which has been highlighted because of its several clinical features.[8],[9] It can decrease the rate of cardiovascular diseases,[10] heart attack, stroke,[11] obesity,[12] and cancer[13] development.

The main component of green tea is polyphenols particularly flavonoids as catechins which are responsible for preventing from streptococcal adhesion to tooth surface,[14] indirect antibacterial effect through increasing salivary secretion of immune system components,[6] and reduction of acid production through lactate dehydrogenase inhibition.[15],[16]

Plaque control chemical agents have been used in mouth rinses, toothpastes, and gels.[17],[18],[19] Gel has been highlighted due to its ease of application and has improved acceptability by children due to similarity with toothpaste regarding shape and way of application.

The aim of the present study was to compare the effectiveness of green tea mouth rinse with green tea gel on the level of salivary S. mutans and Lactobacillus in children aged 12–18 years.


   Subjects and Methods Top


The study design was a randomized controlled clinical trial. The study protocol was approved by the Ethical Committee of Isfahan University of Medical Sciences (grant #396170). It was also registered on the Iranian Registry of Clinical Trials (IRCT, www.irct.ir) with the IRCT code of 36552.

In the present study, 30 teenagers (16 girls and 14 boys) aged 12–18 years were selected from patients who were referred to the pediatric clinic of Isfahan Dental School between January and September 2016. The sample size was calculated with the power of 80%, 0.75 difference in average number of bacteria between two groups, and α set at 0.05. Children and their parents were informed verbally and with written information about the study procedure, and informed consent form was signed by the parents.

The inclusion criteria were good oral hygiene (brushing twice a day), no untreated active carious lesion, no existing gingival or periodontal disease, no history of taking systemic antibiotic or fluoride therapy within the last 4 weeks, no regular habit of chewing xylitol-containing gum, drinking tea, coffee, or cocoa, no systemic disease, absence of orthodontic appliances, having no active abscess or drainage, with decayed-missed-filled primary teeth (dmft) of 2 or higher. Participants were asked not to take xylitol-chewing gum, systemic antibiotics, topical fluoride, tea, coffee, and cocoa during the study period and to report any changes in their general health status and medication.

Study design

Participants were randomly divided into two groups regarding the initial Streptococcus count; Following saliva sample collection, the S. mutans colonies were measured; the names of children with similar bacterial count were written on a piece of paper and mixed together and were randomly assigned into two groups. Information about each participant's health, medication, dental care, and habits was collected at the beginning of the study through a questionnaire and was performed again at the end of the study.

After microbiological assessment, 0.5% green tea mouthwash and 0.5% green tea gel were given to mouthwash and gel group, respectively. Mouthwash was presented in 350 mL bottles and the gel in 250 mL tubes. To make them more attractive for children, containers were labeled with animation figures and direction of use. Participants in the mouthwash group were requested to rinse their mouth after brushing at morning and at night with 20 mL of 0.5% green tea mouth wash, for 60 s, twice a day. After each application, they were asked to prevent from eating or drinking for 1 h. Participants in the gel group also were asked to brush their teeth with 0.5% green tea gel twice a day for 2 min. Saliva samples were gathered 24 h after participants stopped 2 weeks of application of green tea mouthwash and gel, and the level of S. mutans and Lactobacillus was determined. After 4 weeks of washout period, mouthwash group used the gel and gel group rinsed the mouthwash for the same amount of time and with the same instruction as mentioned. It is also necessary to mention that the participants were given the same tooth brush and fluoride tooth paste to brush their teeth twice a day during the study.

Decayed/missed/filled teeth

An experienced dentist examined subject's oral health according to the WHO criteria[20] and recorded number of dmft and decayed/missed/filled permanent teeth.

Preparation of green tea mouth rinse

1.8 g green tea extract containing 6% phenolic compound was diluted by double-distilled water to 20 mL to produce green tea mouthwash containing 0.5% phenolic compound. Then, 20 g sodium lauryl sulfate was added for transparency and 36 g methyl-paraben and 4 g propyl-paraben were added to stabilize the solution. Finally, edible mint color (0.4 g), mint flavor (20 mL), and aspartame sweetener (80 g) were added to the solution.[21]

Preparation of green tea gel

To produce 7 kg of green tea gel, 140 g of carbopol-934 was dissolved in 7 L of double-distilled water. After 24 h, 20 mL 3-ethanolamine was added to neutralize the acidity. To stabilize the gel, 6.12 g of methyl-paraben and 1.4 g of propyl-paraben were added. Then, 0.7 g of green tea extract was added to the gel. The green tea gel was finalized by adding 28 g aspartame as a sweetener, 140 mg of edible mint color, and 7 mL of mint flavor.

Saliva samples

Saliva sampling was carried out before and after each intervention. As the microbial count in saliva fluctuates during the day,[22] sampling was performed at the same time (between 7.30 and 8.30), 1 h after breakfast, and before brushing. To obtain saliva sample, sterile cotton stick was soaked at the mouth floor for 5 min and transferred to 10 ml sterile tubes immediately. One calibrated operator performed all saliva samplings.

Microbial evaluation

The microbial analysis was performed within 45 min after sample collection. To count S. mutans, 20 μl of saliva sample was spread on mitis salivarius agar (Difco) containing 0.2 U/ml bacitracin and sucrose (15% w/v). In addition, to measure the number of lactobacilli colonies, 20 μl of saliva sample was spread on Rogosa agar (Unipath, Basingstoke, UK). Both groups of plates were incubated anaerobically (85% N2, 5% CO2, and 10% H2) at 37°C for 3 days. The colony-forming units (CFUs) were determined by morphology, size, and color and were counted using a stereomicroscope.

Statistical methods

Appropriate descriptive statistics (mean and standard deviation) were determined for each participant at different evaluations. To analyze the difference between baseline and follow-up values in each group, paired sample t-test was used. To test between-group differences, independent sample t-test was used. Data analysis was performed using SPSS 11.5 (SPSS Inc., Chicago, IL, USA), with the significance level set at 0.05.


   Results Top


Thirty participants (46.7% boys and 53.3% girls) performed and completed the study. The mean age of participants was 14 ± 1.84 years. Nineteen (63.3%) children were under 15 years and 11 (36.7%) were 15 years or older. The mean age of girls and boys was 13.79 ± 1.85 and 14.19 ± 1.9 years, respectively. According to the independent sample t- test, no significant differences was found in the mean age of boys and girls (P = 0.56).

The average colony count (CFUs) of the salivary S. mutans was reduced in both groups after 2 weeks of intervention, which was statistically significant (P< 0.001) based on paired sample t-test [Table 1]. Mean reduction in the S. mutans colony count in mouth rinse and gel group was 52% ± 25% and 30% ± 14%, respectively.
Table 1: Changes in Streptococcus mutans colony count (mean±standard deviation) in each group before and after intervention

Click here to view


Repeated measures analysis of variances showed similar changes in the number of S. mutans colonies in two groups (P = 0.33). In fact, both mouth rinse and gel were effective in decreasing in colony count.

Salivary S. mutans colony count decreased by 37% ± 20% in boys and 47% ± 29% in girls [Table 2]. According to the independent sample t- test, no significant difference between two genders was found in colony decrease (P = 0.33). In addition, no significant difference was shown between two genders within each group.
Table 2: Changes in Streptococcus mutans colony count (mean±standard deviation) in each gender

Click here to view


[Table 3] shows the mean change in the number of S. mutans colonies in both mouth rinse and gel groups, separated by their age. It must be noted that according to repeated measures analysis of variances, age and gender variables did not have any confounding effect on the changes in colony count.
Table 3: Changes in Streptococcus mutans colony count (mean±standard deviation) separated by age

Click here to view


Two participants had positive Lactobacillus test which turned to negative after intervention. The Lactobacillus colony count was 8 in one case and 5 in the other participants at the baseline. There was no significant difference in the mean numbers of colonies between two groups (P = 0.17).


   Discussion Top


The purpose of this study was to evaluate the effect of green tea mouth rinse and gel on the level of salivary S. mutans and Lactobacillus. As a result, the null hypothesis pertaining to similar efficacy of mouth rinse in comparison to gel was approved.

Studies have shown that bioactive components of green tea prevent dental caries through different mechanisms as interference in adhesion to enamel, prevention of streptococcal agent, and proliferation and inhibition of bacterial glucosyltransferase and amylase.[6],[14]

In the present study, green tea mouth rinse and gel caused a significant reduction in the number of salivary S. mutans colonies. Nandan et al.[23] found that there is no significant difference between green tea and chlorhexidine mouth rinse on the level of S. mutans and mouth rinsing with green tea can be used as daily preventive measure in children. In another study by Thomas et al.,[24] it was reported that green tea had higher efficacy in reducing salivary levels of S. mutans when compared to chlorhexidine rinse. However, green tea was less effective on the salivary level of Lactobacillus. Tehrani et al.[25] compared the effectiveness of green tea and sodium fluoride mouth rinse on salivary S. mutans and Lactobacillus in their study; green tea mouth rinse significantly decreased both bacteria. However, there was no significant difference between two mouth rinses. Tao et al.[26] found that the chewing gum enriched with green tea polyphenols inhibits dental caries. Behfarnia et al.[27] showed in their study in 2016 that green tea chewing gum improves plaque indices and decreases serum interleukin β1.

Green tea has polyphenols that inhibit growth of S. mutans, S. sobrinus, and Lactobacillus.[28] The polyphenolic compounds prevent bacterial adhesion to tooth surface through changes in the fibrils and fimbriae.[14] On the other hand, catechins inhibit glucosyltransferase and contribute to a significant reduction in plaque index.[6] In Das et al.'s study,[29] green tea mouthwash showed an antibacterial effect on two primary colonizing bacteria and also antiplaque effect comparable to 0.2% chlorhexidine.

The results of the present study indicated that there is no significant difference between effectiveness of green tea mouth rinse and gel on the salivary S. mutans level. However, mouth rinse was more effective in terms of reducing S. mutans count. Both mouth rinse and gel have common components including solvent, flavor, and color; the only difference was the form of the agent. Therefore, the type of ingredients was eliminated as a confounding variable in this study. It should be noted that the gel form was less acceptable to participants due to foam formation during application and stronger flavor because of its consistency.

Results of a study on children aged 6–16 years indicated that drinking catechin green tea enriched with catechin had no adverse effect on children. On the other hand, it decreased the obesity and risk of developing cardiovascular diseases in obese children.[30] Other studies also evaluated catechin safety, and no side effect was also reported.[30],[31],[32]

Studies have shown that early colonization of S. mutans in children's mouth increases the risk of developing caries in 4 years of age. In fact, the earlier the transmission of S. mutans to oral cavity, the higher the risk of dental caries at older ages.[33],[34] Hence, prescribing a safe agent to inhibit cariogenic bacteria in children and teenagers would prevent caries development at older ages. Considering the present findings, it seems that green tea can be used as a safe preventive measure in children and teenagers.

Participants were chosen from children aged 12–18 years; this age range was selected due to the level of participant cooperation needed according to the crossover design of our study. Further studies are recommended to confirm the efficacy of green tea application in children younger than 12 years.


   Conclusions Top


The results of the present study showed that green tea mouth rinse and gel resulted in a significant reduction in a number of salivary S. mutans colonies. Green tea mouth rinse was more effective than gel. However, the difference was not statistically significant.

Acknowledgment

We would like to thank Dr. Najmeh Akhlaghi and Dr. Hadi Moshkelgosha for their assistance in conducting this research.

Financial support and sponsorship

This study was supported by the Isfahan University of Medical Sciences (grant #396170).

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Hardie JM, Whiley RA. Plaque microbiology of crown caries. In: Newman HN, Wilson M, editors. Dental Plaque Revisited Cardiff. UK: Bioline; 1999. p. 283-429.  Back to cited text no. 1
    
2.
Beighton D, Brailsford SR. Plaque microbiology of root caries. In: Newman HN, Wilson M, editors. Dental Plaque Revisited Cardiff. UK: Bioline; 1999. p. 295-312.  Back to cited text no. 2
    
3.
Ansai T, Tahara A, Ikeda M, Katoh Y, Miyazaki H, Takehara T, et al. Influence of colonization with mutans streptococci on caries risk in Japanese preschool children: 24 month survival analysis. Pediatr Dent 2000;22:377-80.  Back to cited text no. 3
    
4.
Berkowitz RJ, Jordan HV, White G. The early establishment of Streptococcus mutans in the mouths of infants. Arch Oral Biol 1975;20:171-4.  Back to cited text no. 4
    
5.
Lopez L, Berkowitz R, Spiekerman C, Weinstein P. Topical antimicrobial therapy in the prevention of early childhood caries: A follow-up report. Pediatr Dent 2002;24:204-6.  Back to cited text no. 5
    
6.
Hamilton-Miller JM. Anti-cariogenic properties of tea (Camellia sinensis). J Med Microbiol 2001;50:299-302.  Back to cited text no. 6
    
7.
Lobo PL, de Carvalho CB, Fonseca SG, de Castro RS, Monteiro AJ, Fonteles MC, et al. Sodium fluoride and chlorhexidine effect in the inhibition of mutans streptococci in children with dental caries: A randomized, double-blind clinical trial. Oral Microbiol Immunol 2008;23:486-91.  Back to cited text no. 7
    
8.
Amin MS, Harrison RL, Benton TS, Roberts M, Weinstein P. Effect of povidone-iodine on Streptococcus mutans in children with extensive dental caries. Pediatr Dent 2004;26:5-10.  Back to cited text no. 8
    
9.
De Paola PF, Jordan HV, Berg J. Temporary suppression of Streptococcus mutans in humans through topical application of vancomycin. J Dent Res 1974;53:108-14.  Back to cited text no. 9
    
10.
Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen elderly study. Lancet 1993;342:1007-11.  Back to cited text no. 10
    
11.
Keli S, Hertog M, Feskens E, Kromhout D. Flavonoids, antioxidant vitamins and risk of stroke. Arch Inter Med 1995;154:637-42.  Back to cited text no. 11
    
12.
Bell SJ, Goodrick GK. A functional food product for the management of weight. Crit Rev Food Sci Nutr 2002;42:163-78.  Back to cited text no. 12
    
13.
McKay DL, Blumberg JB. The role of tea in human health: An update. J Am Coll Nutr 2002;21:1-3.  Back to cited text no. 13
    
14.
Xiao Y, Liu T, Zhan L, Zhou X. The effects of tea polyphenols on the adherence of cariogenic bacterium to the salivary acquired pellicle in vitro. Hua Xi Kou Qiang Yi Xue Za Zhi 2000;18:336-9.  Back to cited text no. 14
    
15.
Ritter AV, Eidson RS, Donovan TE. Dental caries: Etiology, clinical characteristics, risk assessment, and management. In: Heymann HO, Swift EJ, Ritter AV, editors. Art and Science of Operative Dentistry. 6th ed. Canada: Elsevier; 2013. p. 44.  Back to cited text no. 15
    
16.
Narotzki B, Reznick AZ, Aizenbud D, Levy Y. Green tea: A promising natural product in oral health. Arch Oral Biol 2012;57:429-35.  Back to cited text no. 16
    
17.
Lobo PL, Fonteles CS, Marques LA, Jamacaru FV, Fonseca SG, de Carvalho CB, et al. The efficacy of three formulations of Lippia sidoides cham. Essential oil in the reduction of salivary Streptococcus mutans in children with caries: A randomized, double-blind, controlled study. Phytomedicine 2014;21:1043-7.  Back to cited text no. 17
    
18.
Ostela I, Tenovuo J, Söderling E, Lammi E, Lammi M. Effect of chlorhexidine-sodium fluoride gel applied by tray or by toothbrush on salivary mutans streptococci. Proc Finn Dent Soc 1990;86:9-14. Errutum in: Suom Hammaslaak Toim 1989;86:9-14.  Back to cited text no. 18
    
19.
Ostela I, Karhuvaara L, Tenovuo J. Comparative antibacterial effects of chlorhexidine and stannous fluoride-amine fluoride containing dental gels against salivary mutans streptococci. Eur J Oral Sci 1991;99:378-83.  Back to cited text no. 19
    
20.
World Health Organization. Oral Health Surveys: Basic Methods. 4th ed. Genova: World Health Organization; 1997.  Back to cited text no. 20
    
21.
Niazi K. Handbook of Pharmaceutipical Formulations: Liquid products/Sarfaraz Iran: CRC Press;2004.  Back to cited text no. 21
    
22.
Bentley C, Crawford JJ, Broderius CA. Analytical and physiological variability of salivary microbial counts. J Dent Res 1988;67:1409-13.  Back to cited text no. 22
    
23.
Nandan N, Prasanna M, Prem Kishore K. Effect of green tea as a mouth rinse on Streptococcus mutans. J Ayurveda Integr Med Sci 2016;1:7-11.  Back to cited text no. 23
    
24.
Thomas A, Thakur SR, Shetty SB. Anti-microbial efficacy of green tea and chlorhexidine mouth rinses against Streptococcus mutans, Lactobacilli spp. and Candida albicans in children with severe early childhood caries: A randomized clinical study. J Indian Soc Pedod Prev Dent 2016;34:65-70.  Back to cited text no. 24
[PUBMED]  [Full text]  
25.
Tehrani MH, Asghari G, Hajiahmadi M. Comparing Streptococcus mutans and Lactobacillus colony count changes following green tea mouth rinse or sodium fluoride mouth rinse use in children (Randomized double-blind controlled clinical trial). Dent Res J (Isfahan) 2011;8:S58-63.  Back to cited text no. 25
    
26.
Tao DY, Shu CB, Lo EC, Lu HX, Feng XP. A randomized trial on the inhibitory effect of chewing gum containing tea polyphenol on caries. J Clin Pediatr Dent 2013;38:67-70.  Back to cited text no. 26
    
27.
Behfarnia P, Aslani A, Jamshidian F, Noohi S. The efficacy of green tea chewing gum on gingival inflammation. J Dent (Shiraz) 2016;17:149-54.  Back to cited text no. 27
    
28.
Hassani AS, Amirmozafari N, Ordouzadeh N, Hamdi K, Nazari R, Ghaemi A, et al. Volatile components of Camellia sinensis inhibit growth and biofilm formation of oral streptococci in vitro. Pak J Biol Sci 2008;11:1336-41.  Back to cited text no. 28
    
29.
Das N, Ravindra S, Ahmed MG, Vivekananda MR, Jain S. The effect of green tea mouthrinse in a 4 day plaque regrowth modelin vivo and antibacterial efficacy in vitro: A randomized controlled trial. Int J Innov Sci Res 2015;16:171-8.  Back to cited text no. 29
    
30.
Matsuyama T, Tanaka Y, Kamimaki I, Nagao T, Tokimitsu I. Catechin safely improved higher levels of fatness, blood pressure, and cholesterol in children. Obesity (Silver Spring) 2008;16:1338-48.  Back to cited text no. 30
    
31.
Isbrucker RA, Edwards JA, Wolz E, Davidovich A, Bausch J. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: Dermal, acute and short-term toxicity studies. Food Chem Toxicol 2006;44:636-50.  Back to cited text no. 31
    
32.
Lauten JD, Boyd L, Hanson MB, Lillie D, Gullion C, Madden TE, et al. Aclinical study: Melaleuca, manuka, calendula and green tea mouth rinse. Phytother Res 2005;19:951-7.  Back to cited text no. 32
    
33.
Köhler B, Andréen I, Jonsson B. The earlier the colonization by mutans streptococci, the higher the caries prevalence at 4 years of age. Oral Microbiol Immunol 1988;3:14-7.  Back to cited text no. 33
    
34.
Caufield PW, Cutter GR, Dasanayake AP. Initial acquisition of mutans streptococci by infants: Evidence for a discrete window of infectivity. J Dent Res 1993;72:37-45.  Back to cited text no. 34
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Subjects and Methods
   Results
   Discussion
   Conclusions
    References
    Article Tables

 Article Access Statistics
    Viewed419    
    Printed10    
    Emailed0    
    PDF Downloaded44    
    Comments [Add]    

Recommend this journal