Contemporary Clinical Dentistry
   
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |

 

Login  | Users Online: 403  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 



 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2018  |  Volume : 9  |  Issue : 4  |  Page : 597-600  

Nicotine, the predictor of success or failure of dental implants: A retrospective study


1 Department of Prosthodontics and Crown and Bridge, Indraprastha Dental College and Hospital, Sahidabad, Ghaziaabad, Uttar Pradesh, India
2 Division of Prosthodontics, Riyadh Elm University, Riyadh 11681, Kingdom of Saudi Arabia
3 Department of Periodontology and Implantology, SMBT Dental College and Hospital, Sangamner, Maharashtra, India
4 Department of Prosthodontics and Crown and Bridge, Dental College, Azamgarh, Uttar Pradesh, India

Date of Web Publication6-Nov-2019

Correspondence Address:
Dr. Thotapalli Suman
Division of Prosthodontics, Riyadh Elm University, Riyadh 11681
Kingdom of Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ccd.ccd_597_18

Rights and Permissions
   Abstract 


Background: Dental implant therapy is a treatment of choice in missing teeth. However, certain conditions such as smoking, hypertension, and diabetes have negative influence on success of dental implants. Nicotine is found to cause osteoclastic changes. The present study was conducted to assess the relationship between nicotine and implant failure. Materials and Methods: The present retrospective study included 2570 patients of both genders. They were divided into two groups. Group I consisted of 1250 patients with a history of smoking and Group II were nonsmokers and comprised 1320 patients. The presence of pain, mobility, and inflammation was considered positive signs for implant failure. Results: The results showed that in Group I, males had 6.13% and females had 5% dental implant failure. Overall failure rate in Group I was 5.56%. In Group II, males had 2.98% and females had 0.9% failure. Overall failure rate in Group II was 2.35%. The difference between both groups was statistically significant (P < 0.05). In Group I, maximum (56), and in Group II, 18 patients had habit of >10 years of smoking. Maximum patients had habit of consumption of >20 cigarettes/day (Group I) and Group II had only 10 patients with this frequency. Maximum dental implant failures were observed in maxillary arch (70) than in mandibular arch (32). The difference was statistically significant (P < 0.05). Conclusion: Smoking influences the survival rate of dental implants. Thus, patient should be educated to discontinue the habit before implant placement.

Keywords: Dental implant, nicotine, smoking


How to cite this article:
Gupta A, Rathee S, Suman T, Ahire M, Madhav S, Chauhan MS. Nicotine, the predictor of success or failure of dental implants: A retrospective study. Contemp Clin Dent 2018;9:597-600

How to cite this URL:
Gupta A, Rathee S, Suman T, Ahire M, Madhav S, Chauhan MS. Nicotine, the predictor of success or failure of dental implants: A retrospective study. Contemp Clin Dent [serial online] 2018 [cited 2019 Nov 14];9:597-600. Available from: http://www.contempclindent.org/text.asp?2018/9/4/597/270395


   Introduction Top


Dental implants have emerged as a new treatment modality for replacing missing teeth. This has been proved very effective in patients with edentulism. Dental implants' survival rate has been reported as high as 95% in 10 years long span. Its ability to unite with bone through the process of osseointegration has made this famous among all. Apart from its popularity among patients and dentists, it has few limitations also. There are few contraindications such as epilepsy, psychiatric disorders, osteoradionecrosis, smoking and diabetes, and mental retardation.[1] Dental implant failure rate is seen which can be early failures and late failures. Absolute contraindications are patients with a history of myocardial infarction, Cardiovascular abnormalities, bleeding disorders, heart transplantation, active treatment of malignancy, drug abusers, and immunosuppression. Early failures are due to failure in osseointegration, while late failures are due to occlusal overload. There is decreased life of dental implants and thus leads to patient and operator unsatisfaction.[2]

Smoking is one of the deleterious habits which have harmful effect on survival rate of the dental implants. Cigarette smoking contains nicotine, carbon monoxide, nitrogen, carbon dioxide, ammonia, hydrogen cyanide, benzene, anabasine, etc. There has been well-established correlation between periodontal health and smoking. Smoking has direct effect on osseointegration by decreasing blood flow to the implant site, leading to hypoxia of the area via increased aggregation of platelets, and enhancing the peripheral resistance. Studies have shown that the tobacco products inhibit proliferation of cell and hence wound healing.[3],[4]

Strietzel et al.[5] in their study revealed that smoking interferes with the prognosis of dental implant treatment by causing peri-implantitis. Bain et al.[6] in their study of association between the failure of dental implants and cigarette smoking found more dental implant failure (11.3%) in smokers as compared to nonsmokers where failure rate was 4.8%. The present study was conducted to assess the relationship between nicotine and implant failure.


   Materials and Methods Top


The present retrospective study was conducted in the Department of Prosthodontics. It included 2570 patients of both genders. All were informed regarding the study and written consent was obtained. Ethical clearance was taken from the institutional ethical committee.

General information such as name, age, and gender was recorded. Based on history of smoking and nonsmoking, they were divided into two groups. Group I consisted of 1250 patients with a history of smoking, and Group II were nonsmokers and comprised 1320 patients. In smokers, the history of number of cigarettes smoking per day and year of smoking was recorded. Implants were inserted depending on the edentulous site. To maintain the uniformity and to avoid bias, single manufacturer implant (Nobel) was inserted in all patients. Cases where there were pneumatization of maxillary sinus, lifting of sinus was performed, and where bone was lacking, vertical or lateral bone grafting was done.

Following implant surgery, all patients were prescribed 0.2% chlorhexidine mouthwash rinse T.D.S for a week and antibiotic augmentin 500 mg (amoxicillin + clavulanic acid) thrice daily for 5 days. In all cases, nonabsorbable silk suture was used. The patients were instructed to be on soft diet for at least 1 week. The patients were recalled periodically for follow-up for 5 years at the interval of 6 months. The presence of pain, mobility, and inflammation was considered positive signs for implant failure. Results were subjected to statistical analysis using Chi-square test. P < 0.05 was considered statistically significant.


   Results Top


Group I comprised smokers with 1010 males and 240 females, and Group II consisted of nonsmokers with 770 males and 550 females. The difference was statistically significant (P = 0.01) [Table 1]. [Graph 1] shows that in Group I, 62 males (6.13%) and 12 females (5%) had failure. Overall failure rate in Group I was 5.56%. In Group II, 23 males (2.98%) and 5 females (0.9%) had failure. Overall failure rate in Group II was 2.35%. The difference between both the groups was statistically significant (P < 0.05). In Group I, of 74 patients, 56 had >10 years of habit of smoking and 18 had <10 years, and in Group II, 18 had >10 years of habit of smoking and 18 had <10 years. In Group I, 45 patients had frequency of >20 cigarettes consumption per day while 29 had <20. In Group II, 10 patients had frequency of >20 cigarettes consumption per day while 18 had <20. The difference was statistically significant (P < 0.005) [Table 2]. [Graph 2] shows that maximum dental implant failures were observed in maxillary arch (70) than mandibular arch (32). In Group I, 48 failures were seen in maxilla while 26 were in the mandible, whereas in Group II, maxillary arch had 22 implant failures and mandibular arch showed six dental implant failures. The difference was statistically significant (P < 0.05).
Table 1: Distribution of patients

Click here to view

Table 2: History of smoking

Click here to view




   Discussion Top


Dental implants are now need of the hour. The successful implant therapy may be judged by its ability to perform all functions such as mastication and speech. The failure leads to highly unsatisfaction among patients as well as in operators. Pain, suppuration, and mobility are the signs of failures. With the advent in dentistry, dental implants have gained popularity. The osseointegration which is the key to success of implant depends on enhanced osteoblastic activity around the implant promoting direct union between implant and bone. Nicotine, the active constituents of tobacco, leads to osteoclastic activity which in turns cause bone loss. The harmful effects of nicotine can be so deadly that it alters wound healing and subsequently affecting the implant osseointegration.[7]

Haas et al.[8] in their retrospective study of relationship of smoking on peri-implant tissues recorded higher pocket depth around implants, signs of peri-implantitis, and excessive bleeding. Balshe et al.[9] in their study of the effects of smoking on the survival of smooth and rough surface dental implants found that the complications were significantly higher in smokers as compared to nonsmokers. In this study, we included 2570 patients of dental implants. A study by Kumar et al.,[10] where authors assessed the effect of smoking on achieving osseointegration of surface-modified implants, included 1183 implants in 461 patients. A study by Twito and Sade[11] included 7680 dental implants and evaluated failure rates.

In the present study, we divided patients into two groups. Group I had smokers and Group II had nonsmokers. Peleg et al.[12] also divided patients into smokers and nonsmokers. We found that implant failure was more in Group I as compared to Group II. In smokers, implant failure rate was 5.56% (males-6.13% and females-5%). In Group II, the failure rate was 2.35% (males-2.35% and females-0.98%). Similarly, Arora et al.,[13] in their study of comparative evaluation of effect of smoking on survival of dental implant, found 121 dental implant failures out of 3721 implants. Peleg et al.[12] reported higher failure rates in smokers as compared to nonsmokers.

Henemyre et al.[14] in their study revealed that nicotine stimulates osteoclast resorption in a porcine marrow cell model and loss of calcium phosphate component of the bone. Ma et al.[15] in their study of effect of nicotine on the biological activity of osteoblasts suggested that nicotine the active tobacco component has an inhibitory effect on the expression of bone matrix-related genes, which is considered to be essential for bone integration. Lindquist et al.[16] in their 10-year retrospective study found 1 mm of mean marginal bone loss mandibular implants in patients with a history of smoking.

A study by Patrick et al.[17] of a 5-year study on longitudinal clinical efficacy of core-vent dental implants found higher implant failures in the maxilla as compared to mandible. Goodacre et al.[18] in a study of clinical complications with implants and implant prostheses also found higher implant failures in the maxilla than the mandible. In the present study, maxilla (54) had more implant failures than mandible (20).

Truhlar et al.[19] in their study of second-stage failures related to bone quality in patients receiving endosseous dental implants concluded that maximum number of implant failures is seen in patients having D1 type bone as there is less blood supply in this type of bone and hence contributing to the implant failures. DeLuca et al.[20] assessed the effect of smoking on osseointegrated dental implants and concluded that smoking is one of the leading factors of implant failure. Smokers observed higher failure rates (23.08%) than nonsmokers (13.4%).

In the present study, we found that in Group I, maximum (56) patients had >10 years of habit of smoking, and in Group II, only 18 patients had >10 years of habit of smoking. We observed that in Group I, maximum (45) patients had frequency of >20 cigarettes consumption per day, and in Group II, only 10 patients had frequency of >20 cigarettes consumption per day. This is in agreement with the study by Schwartz-Arad et al.[21] of smoking and complications of endosseous implants and found that heavy smokers (>10 cigarettes/day) had higher implant failure rates.

We found that maximum failures were seen in maxilla (70) than mandible (32). Twito and Sade[11] found that maximum failures were seen in maxillary implants than mandibular implants. Ma et al. in their study observed that expression of osteogenic and angiogenic growth factors may be affected by nicotine consumption in the form of cigarettes. César-Neto et al.[22] in their study of the effect of nicotine administration and cigarette smoke inhalation on bone healing around titanium implants found negative effect of nicotine on implant–bone contact point and bone area filling the implant threads. The authors suggested that smoking one of the deleterious habits has been documented in contributing factor that initiates implant failures.


   Conclusion Top


Smoking is the contributing factor of dental implant failure. Nicotine in cigarettes is considered to induce osteoclastic activity in the bone around dental implants, thus influencing the survival rates.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
Meechan JG, Macgregor ID, Rogers SN, Hobson RS, Bate JP, Dennison M, et al. The effect of smoking on immediate post-extraction socket filling with blood and on the incidence of painful socket. Br J Oral Maxillofac Surg 1988;26:402-9.  Back to cited text no. 1
    
2.
MacFarlane GD, Herzberg MC, Wolff LF, Hardie NA. Refractory periodontitis associated with abnormal polymorphonuclear leukocyte phagocytosis and cigarette smoking. J Periodontol 1992;63:908-13.  Back to cited text no. 2
    
3.
Siana JE, Rex S, Gottrup F. The effect of cigarette smoking on wound healing. Scand J Plast Reconstr Surg Hand Surg 1989;23:207-9.  Back to cited text no. 3
    
4.
Friberg B, Jemt T, Lekholm U. Early failures in 4,041 consecutively placed Brånemark dental implants: A study from stage I surgery to the connection of prosthesis. Int J Oral Maxillofac Implants 1991;6:142-6.  Back to cited text no. 4
    
5.
Strietzel FP, Reichart PA, Kale A, Kulkarni M, Wegner B, Küchler I, et al. Smoking interferes with the prognosis of dental implant treatment: A systematic review and meta-analysis. J Clin Periodontol 2007;34:523-44.  Back to cited text no. 5
    
6.
Bain CA, Moy PK. The association between the failure of dental implants and cigarette smoking. Int J Oral Maxillofac Implants 1993;8:609-15.  Back to cited text no. 6
    
7.
Alsaadi G, Quirynen M, Komárek A, van Steenberghe D. Impact of local and systemic factors on the incidence of late oral implant loss. Clin Oral Implants Res 2008;19:670-6.  Back to cited text no. 7
    
8.
Haas R, Haimböck W, Mailath G, Watzek G. The relationship of smoking on peri-implant tissue: A retrospective study. J Prosthet Dent 1996;76:592-6.  Back to cited text no. 8
    
9.
Balshe AA, Eckert SE, Koka S, Assad DA, Weaver AL. The effects of smoking on the survival of smooth – And rough-surface dental implants. Int J Oral Maxillofac Implants 2008;23:1117-22.  Back to cited text no. 9
    
10.
Kumar A, Jaffin RA, Berman C. The effect of smoking on achieving osseointegration of surface-modified implants: A clinical report. Int J Oral Maxillofac Implants 2002;17:816-9.  Back to cited text no. 10
    
11.
Twito D, Sade P. The effect of cigarette smoking habits on the outcome of dental implant treatment. PeerJ 2014;2:e546.  Back to cited text no. 11
    
12.
Peleg M, Garg AK, Mazor Z. Healing in smokers versus nonsmokers: Survival rates for sinus floor augmentation with simultaneous implant placement. Int J Oral Maxillofac Implants 2006;21:551-9.  Back to cited text no. 12
    
13.
Arora A, Reddy MM, Mhatre S, Bajaj A, Gopinath PV, Arvind P. Comparative evaluation of effect of smoking on survival of dental implant. J Int Oral Health 2017;9:24-7.  Back to cited text no. 13
  [Full text]  
14.
Henemyre CL, Scales DK, Hokett SD, Cuenin MF, Peacock ME, Parker MH, et al. Nicotine stimulates osteoclast resorption in a porcine marrow cell model. J Periodontol 2003;74:1440-6.  Back to cited text no. 14
    
15.
Ma L, Zwahlen RA, Zheng LW, Sham MH. Influence of nicotine on the biological activity of rabbit osteoblasts. Clin Oral Implants Res 2011;22:338-42.  Back to cited text no. 15
    
16.
Lindquist LW, Carlsson GE, Jemt T. Association between marginal bone loss around osseointegrated mandibular implants and smoking habits: A 10-year follow-up study. J Dent Res 1997;76:1667-74.  Back to cited text no. 16
    
17.
Patrick D, Zosky J, Lubar R, Buchs A. Longitudinal clinical efficacy of core-vent dental implants: A five-year report. J Oral Implantol 1989;15:95-103.  Back to cited text no. 17
    
18.
Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90:121-32.  Back to cited text no. 18
    
19.
Truhlar RS, Orenstein IH, Morris HF, Ochi S. Distribution of bone quality in patients receiving endosseous dental implants. J Oral Maxillofac Surg 1997;55:38-45.  Back to cited text no. 19
    
20.
DeLuca S, Habsha E, Zarb GA. The effect of smoking on osseointegrated dental implants. Part I: Implant survival. Int J Prosthodont 2006;19:491-8.  Back to cited text no. 20
    
21.
Schwartz-Arad D, Samet N, Samet N, Mamlider A. Smoking and complications of endosseous dental implants. J Periodontol 2002;73:153-7.  Back to cited text no. 21
    
22.
César-Neto JB, Benatti BB, Sallum EA, Casati MZ, Nociti FH Jr. The influence of cigarette smoke inhalation and its cessation on the tooth-supporting alveolar bone: A histometric study in rats. J Periodontal Res 2006;41:118-23.  Back to cited text no. 22
    



 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Tables

 Article Access Statistics
    Viewed43    
    Printed0    
    Emailed0    
    PDF Downloaded4    
    Comments [Add]    

Recommend this journal