Contemporary Clinical Dentistry
   
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |

 

Login  | Users Online: 307  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

ORIGINAL ARTICLE
Year : 2018  |  Volume : 9  |  Issue : 4  |  Page : 592-596

Osteogenic differentiation of human amniotic mesenchymal stem cells in chitosan-carbonate apatite scaffold (in vivo study)


1 Department of Prosthodontic, Faculty of Dental Medicine; Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
2 Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
3 Stem Cell Research and Development Center, Universitas Airlangga; Regenerative Medicine and Stem Cell Center, Dr. Soetomo National Hospital; Department of Virology, Immunology and Microbiology, Faculty of Veterinary - Universitas Airlangga, Surabaya, Indonesia
4 Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia

Correspondence Address:
Dr. Michael Josef Kridanto Kamadjaja
Prof. Dr. Moestopo 47, Surabaya, East Java 60132
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ccd.ccd_627_18

Rights and Permissions

Background: Studies of bone tissue engineering as a viable alternative to autogenous bone graft show promising results, although its mechanism and effectiveness remain only partially understood. Purpose: to explain the osteogenic differentiation of scaffold chitosan (Ch)–carbonate apatite (CA) in seeding with human amniotic mesenchymal stem cells (hAMSCs) on the regeneration of calvarial bone defects in rats. Materials and Methods: Shitosan-Carbonate Apatite (Ch-CA) scaffold was created by means of a freeze-drying method. Twenty Wistar rats were randomly divided into two groups: control and treatment. Defects were created in the calvarial bone of each treatment group with a scaffold subsequently implanted. After 8 weeks, the rats were terminated for histology and immunohistochemistry examination. Results: Expressions of vascular endothelial growth factor, bone morphogenetic protein2, Runt-related transcription factor 2 (RUNX2), and angiogenesis occurred earlier in the tissue-engineered group than that in the control group. An 8-week analysis also showed that the expression of RUNX2, alkaline phosphatase, osteocalcin, and collagen type 1 was at more elevated levels in the treatment group than that in the control group. Conclusion: These results showed that the combination of hAMSCs and Ch-CA scaffold may become one of the candidates for bone tissue engineering.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed19    
    Printed0    
    Emailed0    
    PDF Downloaded4    
    Comments [Add]    

Recommend this journal