Contemporary Clinical Dentistry
   
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |

 

Login  | Users Online: 1624  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 3  |  Page : 373-379

Microtensile bond strength and failure modes of flowable composites on primary dentin with application of different adhesive strategies


1 Department of Pediatric Dentistry, Faculty of Dentistry, Bülent Ecevit University, Zonguldak, Turkey
2 Department of Pediatric Dentistry, Faculty of Dentistry, Gazi University, Ankara, Turkey

Correspondence Address:
Simge Durmuslar
Department of Pediatric Dentistry, Faculty of Dentistry, Bülent Ecevit University, Zonguldak
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ccd.ccd_310_17

Rights and Permissions

Background: Resin composite is an option for the restoration of primary teeth, and new materials with simplified procedures are increasingly being suggested. Aims: This study aims to evaluate the microtensile bond strengths and fracture modes of flowable composites on primary dentin with application of different adhesive strategies. Materials and Methods: Sixty extracted noncaries primary molars were abraded from buccal surfaces to expose dentin surface. The teeth were randomly divided into three groups as follows: Group 1, Vertise™ Flow (Kerr) (self-adhering flowable composite); Group 2, G-aenial Universal Flo® (GC Europe) (used with one-step self-etch system); Group 3, Tetric® N-Flow (Ivoclar/Vivadent) (used with two-step total etch system). Then, the flowable composites were applied to buccal dentin surfaces with the help of guide mold. Samples were embedded in acrylic blocks and sectioned to form dentin-composite sticks with a surface area of approximately 1 mm2. Finally, a total of 180 sticks were obtained to give each group of 60 sticks. Microtensile bond strengths were measured using a universal testing machine (1 mm/min). Fracture modes were evaluated with scanning electron microscopy. Statistical Analysis: Microtensile bond strengths data were analyzed by Kruskal–Wallis nonparametric test. Results: The microtensile bond strengths of G-aenial (15.5 megapascals [Mpa]) and Tetric (13.0 MPa) were statistically significant higher than Vertise (2.3 MPa). It was recorded that most of fractures in G-aenial was 40% cohesive, Tetric was 53.3% mixed, and Vertise was 83.3% adhesive. Conclusions: The self-adhering flowable composite Vertise™ Flow had the lowest and G-aenial Universal Flo® had the highest microtensile bond values.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1768    
    Printed11    
    Emailed0    
    PDF Downloaded167    
    Comments [Add]    

Recommend this journal