Contemporary Clinical Dentistry
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |


Login  | Users Online: 1250  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2015  |  Volume : 6  |  Issue : 2  |  Page : 170-175

Enamel morphology after microabrasion with experimental compounds

1 Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas - FOP/Unicamp, São Paulo, Brazil
2 Clinical Practice, São Paulo, Brazil
3 Restorative Dentistry, Clinical Practice, São Paulo, Brazil, São Paulo, Brazil

Correspondence Address:
Débora Alves Nunes Leite Lima
Department of Restorative Dentistry, Piracicaba Dental School, P. O. Box 52, University of Campinas -UNICAMP 13414-903, Piracicaba, SP
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0976-237X.156038

Rights and Permissions

Background: Enamel microabrasion is an esthetic treatment for removing superficial stains or defects of enamel. Aim: This study evaluated the roughness after enamel microabrasion using experimental microabrasive systems. Materials and Methods: One hundred and ten samples (5 × 5 mm) were obtained from bovine incisors and divided into 11 groups (n = 10) in accordance with the treatment: Microabrasion using 6.6% hydrochloric acid (HCl) or 35% phosphoric acid (H 3 PO 4 ) associated with aluminum oxide (AlO 3 ) or pumice (Pum) with active application (using rubber cup coupled with a micro-motor of low rotation) or passive application (just placing the mixture on the enamel surface); just the use of acids in a passive application (negative control), and a group without treatment (positive control). Roughness analysis was performed before and after treatments. The statistical analysis used analysis of variance (PROC MIXED), Tukey-Kramer and Dunnet tests (P < 0.05). Representative specimens were evaluated using scanning electron microscopy (SEM). Results: There was no significant difference between the acids used (P = 0.0510) and the applications (P = 0.8989). All of the treated groups were statistically different from the positive control. When using passive application, the use of HCl + AlO 3 resulted in higher roughness when compared with HCl + Pum. Additionally, this treatment was statistically different from the passive application of H 3 PO 4 (negative control) (P < 0.05). However, SEM analysis showed that the treatment with AlO 3 resulted in an enamel surface with a more polished aspect when compared with Pum. Conclusion: AlO 3 may be a suitable particle for use in microabrasive systems.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded189    
    Comments [Add]    
    Cited by others 1    

Recommend this journal