Contemporary Clinical Dentistry
  Home | About us | Editorial board | Search
Ahead of print | Current Issue | Archives | Advertise
Instructions | Online submission| Contact us | Subscribe |


Login  | Users Online: 904  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

Year : 2014  |  Volume : 5  |  Issue : 1  |  Page : 20-24

Zinc oxide nano-particles as sealer in endodontics and its sealing ability

1 Dental Material Research Center, Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Iran
2 Dental Research Center, Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences (MUMS), Iran
3 Endodontist, Private Practice, Iran
4 General Practitioner, Iran

Correspondence Address:
Neda Naghavi
Dental Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0976-237X.128656

Rights and Permissions

Aims: The aim of this study was to evaluate the sealing ability of new experimental nano-ZOE-based sealer. Settings and Design: Three types of nano-ZOE-based sealer (calcined at different temperatures of 500, 600 and 700°C) with two other commercially available sealers (AH26 and micro-sized zinc oxide eugenol sealer) were used. Materials and Methods: Zinc oxide nano-particles were synthesized by a modified sol-gel method. The structure and morphology of the prepared powders were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The instrumented canals of 60 single-rooted teeth were divided into five groups (n = 10), with the remaining ten used as controls. The canals were filled with gutta-percha using one of the materials mentioned above as sealer. After 3, 45 and 90 days, the samples were connected to a fluid filtration system. Statistical Analysis Used: The data were analyzed using Student's t-test. Results: The XRD patterns and TEM images revealed that all the synthesized powders had hexagonal wurtzite structures with an average particle size of about 30-60 nm at different calcination temperatures. Microleakage in AH26 groups was significantly more than that in three groups of ZnO nano-particles at all the three evaluation intervals. Apical microleakage of ZnO micro-powders was significantly more than that of all the materials, but the sealing ability of ZnO nano-powder sealers did not differ significantly. Conclusion: The results of this study showed that the synthesized ZnO nano-powder sealers are suitable for use as a nano-sealer in root canal therapy to prevent leakage; however, further studies should be carried out to verify their safety.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded434    
    Comments [Add]    
    Cited by others 5    

Recommend this journal